BEA-Net:用于医学图像分割的具有多尺度短期连接的Body and Edge感知网络

本文主要是介绍BEA-Net:用于医学图像分割的具有多尺度短期连接的Body and Edge感知网络,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

BEA-Net: Body and Edge Aware Network With Multi-Scale Short-Term Concatenation for Medical Image Segmentation

  • BEA-Net:用于医学图像分割的具有多尺度短期连接的Body and Edge感知网络
    • 背景
    • 贡献
    • 实验
    • 方法
      • Shared Encoder With MSSTC Modules(带有MSSTC模块的共享编码器)
      • Body Decoder With Body Generation Modules (带Body Generation模块的Body解码器)
      • Edge Decoder With Edge Generation Modules(带边缘生成模块的边缘解码器)
    • 损失函数
    • Thinking

BEA-Net:用于医学图像分割的具有多尺度短期连接的Body and Edge感知网络

4828 IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, VOL. 27, NO. 10, OCTOBER 2023

背景

医学图像分割对于许多疾病的诊断和预后是必不可少的。为了提高分割性能,本研究提出了一种新的具有多尺度短期级联的二维主体和边缘感知网络,用于医学图像分割。提出了将具有不同感受野的连续卷积层连接起来的多尺度短期连接模块,用于捕获具有较少参数的多尺度表示。提出了基于加权图计算通过扩大感受野进行特征调整的主体生成模块,以及使用Sobel核进行边缘检测的多尺度卷积的边缘生成模块,以分别从解码器中的卷积特征中学习身体和边缘特征,使所提出的网络具有身体和边缘感知能力。基于本体和边缘模块,我们设计了并行的本体和边缘解码器,其输出被融合以实现最终的分割。此外,还应用了本体和边缘解码器的深度监督,以确保生成的本体和边缘特征的有效性,并进一步改进最终分割。在六个公共医学图像分割数据集上对所提出的方法进行了训练和评估,以证明其有效性和通用性。实验结果表明,在所有使用的数据集上,该方法的平均Dice相似系数和95%的Hausdorff距离都优于几个基准。消融研究验证了所提出的多尺度表示学习模块、身体和边缘生成模块以及深度监督的有效性。

贡献

1) 与之前的大多数方法(如[9]、[11]、[16])需要额外的网络参数来捕获多尺度特征不同,我们提出了多尺度短期级联模块,该模块可以用比常用卷积层更少的参数来学习多尺度特征
2) 与之前大多数只考虑身体或边缘信息的方法不同,如[28]、[39]、[40],我们设计了并行的身体和边缘解码器,以充分利用身体和边缘信息进行分割;
3) 与[33]、[34]等以前的大多数方法不同,这些方法只使用损失来利用主体和边缘信息,或者不设计独立的模块来提取边缘特征,如[25],在本研究中,除了使用主体和边缘监督损失,我们设计了相互独立的身体生成模块边缘生成模块,分别学习更有效的身体和边缘特征;
4) 在六个不同的医学图像分割数据集上对所提出的BEA-Net进行了评估,以证明其有效性和通用性。结果表明,与现有的几种方法相比,该方法可以以较低的计算复杂度获得最佳的分割性能。

实验

数据集:ISIC2018、JSRT、IDRiD、BUSI、CVC-ClinicDB、Kvasir-SEG
在这里插入图片描述
消融实验:

  • 各个模块、两个分支的消融
    在这里插入图片描述
  • 深度监督的消融
    在这里插入图片描述
  • MSSTC模块位置的消融
  • MSSTC kernel_size以及输出通道数的消融
    在这里插入图片描述
  • 边缘分支放在编码器还是解码器的消融
    在这里插入图片描述
  • 下采样率消融
    在这里插入图片描述

方法

在这里插入图片描述

Shared Encoder With MSSTC Modules(带有MSSTC模块的共享编码器)

为了用多尺度信息更少的网络参数生成更有效的高层特征,在每个深层应用了上述两个MSSTC模块
MSSTC模块,它可以用来代替常用的3×3卷积层,以学习多尺度特征,同时减少网络参数
在这里插入图片描述
在这里插入图片描述

Body Decoder With Body Generation Modules (带Body Generation模块的Body解码器)

通常,body部位是可以使用大的感受野来捕获的低空间频率分量。此外,如果不同分辨率特征图中某个位置的特征都是显著的,则可以认为该位置的信息变化不大,是低空间频率信息。因此,这个位置更有可能是身体。以上这些假设启发了我们BG模块的设计。因此,我们首先通过步长为2和4的3×3卷积运算,将原始输入特征下采样为两个不同的低分辨率特征,以实现用于捕获粗略身体特征的大RF。然后,为了生成可用于详细说明身体特征生成的原始特征的身体位置权重图,我们提出了一种基于不同分辨率卷积特征的身体定位权重块。
提出了一种基于不同分辨率卷积特征的body定位权重块。在该块中,通过双线性插值将两个下采样的特征上采样到原始分辨率,并将原始特征和两个上采样的特征连接起来
在这里插入图片描述

Edge Decoder With Edge Generation Modules(带边缘生成模块的边缘解码器)

三个Sobel卷积层,步长分别为1、2和4。使用不同的步长来实现多尺度边缘信息
在这里插入图片描述

损失函数

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

Thinking

主体框架是一个编码器,主体解码器和边界解码器。
MSSTC模块:在不增加参数量的情况下捕获多尺度特征,替代编码器的Conv2d
body generation module:主体特征提取模块,不同尺度特征加权融合
edge generation module:边缘特征提取模块,不同stride的sobel卷积,提取多尺度边缘特征拼接融合
对主体、边界、整个roi区域进行监督
主体部分 = 整个roi - canny(边界)
在这里插入图片描述
边界分支提升了 0.6%
实验丰富,数据集多,消融实验多

这篇关于BEA-Net:用于医学图像分割的具有多尺度短期连接的Body and Edge感知网络的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/522528

相关文章

python连接本地SQL server详细图文教程

《python连接本地SQLserver详细图文教程》在数据分析领域,经常需要从数据库中获取数据进行分析和处理,下面:本文主要介绍python连接本地SQLserver的相关资料,文中通过代码... 目录一.设置本地账号1.新建用户2.开启双重验证3,开启TCP/IP本地服务二js.python连接实例1.

Ubuntu中远程连接Mysql数据库的详细图文教程

《Ubuntu中远程连接Mysql数据库的详细图文教程》Ubuntu是一个以桌面应用为主的Linux发行版操作系统,这篇文章主要为大家详细介绍了Ubuntu中远程连接Mysql数据库的详细图文教程,有... 目录1、版本2、检查有没有mysql2.1 查询是否安装了Mysql包2.2 查看Mysql版本2.

Python3.6连接MySQL的详细步骤

《Python3.6连接MySQL的详细步骤》在现代Web开发和数据处理中,Python与数据库的交互是必不可少的一部分,MySQL作为最流行的开源关系型数据库管理系统之一,与Python的结合可以实... 目录环境准备安装python 3.6安装mysql安装pymysql库连接到MySQL建立连接执行S

Linux系统配置NAT网络模式的详细步骤(附图文)

《Linux系统配置NAT网络模式的详细步骤(附图文)》本文详细指导如何在VMware环境下配置NAT网络模式,包括设置主机和虚拟机的IP地址、网关,以及针对Linux和Windows系统的具体步骤,... 目录一、配置NAT网络模式二、设置虚拟机交换机网关2.1 打开虚拟机2.2 管理员授权2.3 设置子

揭秘Python Socket网络编程的7种硬核用法

《揭秘PythonSocket网络编程的7种硬核用法》Socket不仅能做聊天室,还能干一大堆硬核操作,这篇文章就带大家看看Python网络编程的7种超实用玩法,感兴趣的小伙伴可以跟随小编一起... 目录1.端口扫描器:探测开放端口2.简易 HTTP 服务器:10 秒搭个网页3.局域网游戏:多人联机对战4.

SpringBoot使用OkHttp完成高效网络请求详解

《SpringBoot使用OkHttp完成高效网络请求详解》OkHttp是一个高效的HTTP客户端,支持同步和异步请求,且具备自动处理cookie、缓存和连接池等高级功能,下面我们来看看SpringB... 目录一、OkHttp 简介二、在 Spring Boot 中集成 OkHttp三、封装 OkHttp

Spring Boot 整合 MyBatis 连接数据库及常见问题

《SpringBoot整合MyBatis连接数据库及常见问题》MyBatis是一个优秀的持久层框架,支持定制化SQL、存储过程以及高级映射,下面详细介绍如何在SpringBoot项目中整合My... 目录一、基本配置1. 添加依赖2. 配置数据库连接二、项目结构三、核心组件实现(示例)1. 实体类2. Ma

电脑win32spl.dll文件丢失咋办? win32spl.dll丢失无法连接打印机修复技巧

《电脑win32spl.dll文件丢失咋办?win32spl.dll丢失无法连接打印机修复技巧》电脑突然提示win32spl.dll文件丢失,打印机死活连不上,今天就来给大家详细讲解一下这个问题的解... 不知道大家在使用电脑的时候是否遇到过关于win32spl.dll文件丢失的问题,win32spl.dl

Linux系统之主机网络配置方式

《Linux系统之主机网络配置方式》:本文主要介绍Linux系统之主机网络配置方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、查看主机的网络参数1、查看主机名2、查看IP地址3、查看网关4、查看DNS二、配置网卡1、修改网卡配置文件2、nmcli工具【通用

C++字符串提取和分割的多种方法

《C++字符串提取和分割的多种方法》在C++编程中,字符串处理是一个常见的任务,尤其是在需要从字符串中提取特定数据时,本文将详细探讨如何使用C++标准库中的工具来提取和分割字符串,并分析不同方法的适用... 目录1. 字符串提取的基本方法1.1 使用 std::istringstream 和 >> 操作符示