sklearn.preprocessing.StandardScaler

2023-12-20 22:08

本文主要是介绍sklearn.preprocessing.StandardScaler,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

http://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler.html#sklearn.preprocessing.StandardScaler
sklearn中的StandardScaler,是对每个特征(列向量)独立地进行居中和缩放。然后存储平均值和标准偏差以使用变换方法在以后的数据上使用 。

这篇关于sklearn.preprocessing.StandardScaler的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/517670

相关文章

【学习笔记】 陈强-机器学习-Python-Ch15 人工神经网络(1)sklearn

系列文章目录 监督学习:参数方法 【学习笔记】 陈强-机器学习-Python-Ch4 线性回归 【学习笔记】 陈强-机器学习-Python-Ch5 逻辑回归 【课后题练习】 陈强-机器学习-Python-Ch5 逻辑回归(SAheart.csv) 【学习笔记】 陈强-机器学习-Python-Ch6 多项逻辑回归 【学习笔记 及 课后题练习】 陈强-机器学习-Python-Ch7 判别分析 【学

【机器学习 sklearn】模型正则化L1-Lasso,L2-Ridge

#coding:utf-8from __future__ import divisionimport sysreload(sys)sys.setdefaultencoding('utf-8')import timestart_time = time.time()import pandas as pd# 输入训练样本的特征以及目标值,分别存储在变量X_train与y_train之中。

【机器学习 sklearn】特征筛选feature_selection

特征筛选更加侧重于寻找那些对模型的性能提升较大的少量特征。 继续沿用Titannic数据集,这次试图通过特征刷选来寻找最佳的特征组合,并且达到提高预测准确性的目标。 #coding:utf-8from __future__ import divisionimport sysreload(sys)sys.setdefaultencoding('utf-8')import timest

结合sklearn说一下特征选择

特征选择(排序)对于数据科学家、机器学习从业者来说非常重要。好的特征选择能够提升模型的性能,更能帮助我们理解数据的特点、底层结构,这对进一步改善模型、算法都有着重要作用。 特征选择主要有两个功能: 减少特征数量、降维,使模型泛化能力更强,减少过拟合增强对特征和特征值之间的理解 拿到数据集,一个特征选择方法,往往很难同时完成这两个目的。通常情况下,我们经常不管三七二十一,选择一种自己最熟悉或者

5.sklearn-朴素贝叶斯算法、决策树、随机森林

文章目录 环境配置(必看)头文件引用1.朴素贝叶斯算法代码运行结果优缺点 2.决策树代码运行结果决策树可视化图片优缺点 3.随机森林代码RandomForestClassifier()运行结果总结 环境配置(必看) Anaconda-创建虚拟环境的手把手教程相关环境配置看此篇文章,本专栏深度学习相关的版本和配置,均按照此篇文章进行安装。 头文件引用 from sklear

4.sklearn-K近邻算法、模型选择与调优

文章目录 环境配置(必看)头文件引用1.sklearn转换器和估计器1.1 转换器 - 特征工程的父类1.2 估计器(sklearn机器学习算法的实现) 2.K-近邻算法2.1 简介:2.2 K-近邻算法API2.3 K-近邻算法代码2.4 运行结果2.5 K-近邻算法优缺点 3.模型选择与调优3.1 交叉验证(cross validation)3.2 网格搜索(Grid Search)3

复现反向传播BP算法:手动实现与Sklearn MLP对比分析【复现】

完整代码 import numpy as npimport matplotlib.pyplot as pltfrom sklearn.datasets import make_moonsfrom sklearn.model_selection import train_test_splitfrom sklearn.datasets import load_breast_cancerfr

sklearn学习笔记(1)--make_blobs

make_blobs聚类数据生成器简介 scikit中的make_blobs方法常被用来生成聚类算法的测试数据,直观地说,make_blobs会根据用户指定的特征数量、中心点数量、范围等来生成几类数据,这些数据可用于测试聚类算法的效果。 make_blobs方法: sklearn.datasets.make_blobs(n_samples=100, n_features=2,cente

sklearn光速入门实践[1]——实现一个简单的SVM分类器

python的sklearn库封装了许多常用的机器学习算法,而且入门简单,调用方便。下面我们用sklearn库和简单的几个点作为数据集,来实现一个简单的SVM分类器。 首先,准备好数据。我们把(2,0),(0,2),(0,0)这三个点当作类别1;(3,0),(0,3),(3,3)这三个点当作类别2,训练好SVM分类器之后,我们预测(-1,-1),(4,4)这两个点所属的类别。示意图如下: 1

sklearn中的线性回归

多元线性回归 指的 是一个样本 有多个特征的 线性回归问题。             w 被统称为 模型的 参数,其中 w0 被称为截距(intercept),w1~wn 被称为 回归系数(regression coefficient)。这个表达式和 y=az+b 是同样的性质。其中 y 是目标变量,也就是 标签。xi1~xin 是样本 i 上的特征 不同特征。如果考虑有 m 个样本