【机器学习 sklearn】模型正则化L1-Lasso,L2-Ridge

2024-09-07 06:48

本文主要是介绍【机器学习 sklearn】模型正则化L1-Lasso,L2-Ridge,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

#coding:utf-8
from __future__ import division
import sys
reload(sys)
sys.setdefaultencoding('utf-8')
import time
start_time = time.time()
import pandas as pd# 输入训练样本的特征以及目标值,分别存储在变量X_train与y_train之中。
X_train = [[6], [8], [10], [14], [18]]
y_train = [[7], [9], [13], [17.5], [18]]# 从sklearn.linear_model中导入LinearRegression。
from sklearn.linear_model import LinearRegression
# 使用默认配置初始化线性回归模型。
regressor = LinearRegression()
# 直接以披萨的直径作为特征训练模型。
regressor.fit(X_train, y_train)# 导入numpy并且重命名为np。
import numpy as np
# 在x轴上从0至25均匀采样100个数据点。
xx = np.linspace(0, 26, 100)
xx = xx.reshape(xx.shape[0], 1)
# 以上述100个数据点作为基准,预测回归直线。
yy = regressor.predict(xx)# 对回归预测到的直线进行作图。
import matplotlib.pyplot as plt
plt.scatter(X_train, y_train)
plt1, = plt.plot(xx, yy, label="Degree=1")
plt.axis([0, 25, 0, 25])
plt.xlabel('Diameter of Pizza')
plt.ylabel('Price of Pizza')
plt.legend(handles = [plt1])
plt.show()# 输出线性回归模型在训练样本上的R-squared值。
print 'The R-squared value of Linear Regressor performing on the training data is', regressor.score(X_train, y_train)# 从sklearn.preproessing中导入多项式特征产生器
from sklearn.preprocessing import PolynomialFeatures
# 使用PolynominalFeatures(degree=2)映射出2次多项式特征,存储在变量X_train_poly2中。
poly2 = PolynomialFeatures(degree=2)
X_train_poly2 = poly2.fit_transform(X_train)# 以线性回归器为基础,初始化回归模型。尽管特征的维度有提升,但是模型基础仍然是线性模型。
regressor_poly2 = LinearRegression()# 对2次多项式回归模型进行训练。
regressor_poly2.fit(X_train_poly2, y_train)# 从新映射绘图用x轴采样数据。
xx_poly2 = poly2.transform(xx)# 使用2次多项式回归模型对应x轴采样数据进行回归预测。
yy_poly2 = regressor_poly2.predict(xx_poly2)# 分别对训练数据点、线性回归直线、2次多项式回归曲线进行作图。
plt.scatter(X_train, y_train)plt1, = plt.plot(xx, yy, label='Degree=1')
plt2, = plt.plot(xx, yy_poly2, label='Degree=2')plt.axis([0, 25, 0, 25])
plt.xlabel('Diameter of Pizza')
plt.ylabel('Price of Pizza')
plt.legend(handles = [plt1, plt2])
plt.show()# 输出2次多项式回归模型在训练样本上的R-squared值。
print 'The R-squared value of Polynominal Regressor (Degree=2) performing on the training data is', regressor_poly2.score(X_train_poly2, y_train)# 从sklearn.preprocessing导入多项式特征生成器。
from sklearn.preprocessing import PolynomialFeatures
# 初始化4次多项式特征生成器。
poly4 = PolynomialFeatures(degree=4)X_train_poly4 = poly4.fit_transform(X_train)# 使用默认配置初始化4次多项式回归器。
regressor_poly4 = LinearRegression()
# 对4次多项式回归模型进行训练。
regressor_poly4.fit(X_train_poly4, y_train)# 从新映射绘图用x轴采样数据。
xx_poly4 = poly4.transform(xx)
# 使用4次多项式回归模型对应x轴采样数据进行回归预测。
yy_poly4 = regressor_poly4.predict(xx_poly4)# 分别对训练数据点、线性回归直线、2次多项式以及4次多项式回归曲线进行作图。
plt.scatter(X_train, y_train)
plt1, = plt.plot(xx, yy, label='Degree=1')
plt2, = plt.plot(xx, yy_poly2, label='Degree=2')plt4, = plt.plot(xx, yy_poly4, label='Degree=4')
plt.axis([0, 25, 0, 25])
plt.xlabel('Diameter of Pizza')
plt.ylabel('Price of Pizza')
plt.legend(handles = [plt1, plt2, plt4])
plt.show()print 'The R-squared value of Polynominal Regressor (Degree=4) performing on the training data is',regressor_poly4.score(X_train_poly4, y_train)# 准备测试数据。
X_test = [[6], [8], [11], [16]]
y_test = [[8], [12], [15], [18]]
# 使用测试数据对线性回归模型的性能进行评估。
regressor.score(X_test, y_test)# 使用测试数据对2次多项式回归模型的性能进行评估。
X_test_poly2 = poly2.transform(X_test)
regressor_poly2.score(X_test_poly2, y_test)# 使用测试数据对4次多项式回归模型的性能进行评估。
X_test_poly4 = poly4.transform(X_test)
regressor_poly4.score(X_test_poly4, y_test)# 从sklearn.linear_model中导入Lasso。
from sklearn.linear_model import Lasso# 从使用默认配置初始化Lasso。
lasso_poly4 = Lasso()
# 从使用Lasso对4次多项式特征进行拟合。
lasso_poly4.fit(X_train_poly4, y_train)# 对Lasso模型在测试样本上的回归性能进行评估。
print lasso_poly4.score(X_test_poly4, y_test)# 输出Lasso模型的参数列表。
print lasso_poly4.coef_# 回顾普通4次多项式回归模型过拟合之后的性能。
print regressor_poly4.score(X_test_poly4, y_test)# 回顾普通4次多项式回归模型的参数列表。
print regressor_poly4.coef_# 输出上述这些参数的平方和,验证参数之间的巨大差异。
print np.sum(regressor_poly4.coef_ ** 2)# 从sklearn.linear_model导入Ridge。
from sklearn.linear_model import Ridge
# 使用默认配置初始化Riedge。
ridge_poly4 = Ridge()# 使用Ridge模型对4次多项式特征进行拟合。
ridge_poly4.fit(X_train_poly4, y_train)# 输出Ridge模型在测试样本上的回归性能。
print ridge_poly4.score(X_test_poly4, y_test)# 输出Ridge模型的参数列表,观察参数差异。
print ridge_poly4.coef_# 计算Ridge模型拟合后参数的平方和。
print np.sum(ridge_poly4.coef_ ** 2)
"D:\Program Files\Python27\python.exe" D:/PycharmProjects/sklearn/模型正则化.py
The R-squared value of Linear Regressor performing on the training data is 0.910001596424
The R-squared value of Polynominal Regressor (Degree=2) performing on the training data is 0.98164216396
The R-squared value of Polynominal Regressor (Degree=4) performing on the training data is 1.00.83889268736
[  0.00000000e+00   0.00000000e+00   1.17900534e-01   5.42646770e-05-2.23027128e-04]
0.809588079575
[[  0.00000000e+00  -2.51739583e+01   3.68906250e+00  -2.12760417e-014.29687500e-03]]
647.382645692
0.837420175937
[[ 0.         -0.00492536  0.12439632 -0.00046471 -0.00021205]]
0.0154989652035

这篇关于【机器学习 sklearn】模型正则化L1-Lasso,L2-Ridge的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1144358

相关文章

0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeek R1模型的操作流程

《0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeekR1模型的操作流程》DeepSeekR1模型凭借其强大的自然语言处理能力,在未来具有广阔的应用前景,有望在多个领域发... 目录0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeek R1模型,3步搞定一个应

Deepseek R1模型本地化部署+API接口调用详细教程(释放AI生产力)

《DeepseekR1模型本地化部署+API接口调用详细教程(释放AI生产力)》本文介绍了本地部署DeepSeekR1模型和通过API调用将其集成到VSCode中的过程,作者详细步骤展示了如何下载和... 目录前言一、deepseek R1模型与chatGPT o1系列模型对比二、本地部署步骤1.安装oll

Java深度学习库DJL实现Python的NumPy方式

《Java深度学习库DJL实现Python的NumPy方式》本文介绍了DJL库的背景和基本功能,包括NDArray的创建、数学运算、数据获取和设置等,同时,还展示了如何使用NDArray进行数据预处理... 目录1 NDArray 的背景介绍1.1 架构2 JavaDJL使用2.1 安装DJL2.2 基本操

Spring AI Alibaba接入大模型时的依赖问题小结

《SpringAIAlibaba接入大模型时的依赖问题小结》文章介绍了如何在pom.xml文件中配置SpringAIAlibaba依赖,并提供了一个示例pom.xml文件,同时,建议将Maven仓... 目录(一)pom.XML文件:(二)application.yml配置文件(一)pom.xml文件:首

如何在本地部署 DeepSeek Janus Pro 文生图大模型

《如何在本地部署DeepSeekJanusPro文生图大模型》DeepSeekJanusPro模型在本地成功部署,支持图片理解和文生图功能,通过Gradio界面进行交互,展示了其强大的多模态处... 目录什么是 Janus Pro1. 安装 conda2. 创建 python 虚拟环境3. 克隆 janus

本地私有化部署DeepSeek模型的详细教程

《本地私有化部署DeepSeek模型的详细教程》DeepSeek模型是一种强大的语言模型,本地私有化部署可以让用户在自己的环境中安全、高效地使用该模型,避免数据传输到外部带来的安全风险,同时也能根据自... 目录一、引言二、环境准备(一)硬件要求(二)软件要求(三)创建虚拟环境三、安装依赖库四、获取 Dee

DeepSeek模型本地部署的详细教程

《DeepSeek模型本地部署的详细教程》DeepSeek作为一款开源且性能强大的大语言模型,提供了灵活的本地部署方案,让用户能够在本地环境中高效运行模型,同时保护数据隐私,在本地成功部署DeepSe... 目录一、环境准备(一)硬件需求(二)软件依赖二、安装Ollama三、下载并部署DeepSeek模型选

Golang的CSP模型简介(最新推荐)

《Golang的CSP模型简介(最新推荐)》Golang采用了CSP(CommunicatingSequentialProcesses,通信顺序进程)并发模型,通过goroutine和channe... 目录前言一、介绍1. 什么是 CSP 模型2. Goroutine3. Channel4. Channe

Python基于火山引擎豆包大模型搭建QQ机器人详细教程(2024年最新)

《Python基于火山引擎豆包大模型搭建QQ机器人详细教程(2024年最新)》:本文主要介绍Python基于火山引擎豆包大模型搭建QQ机器人详细的相关资料,包括开通模型、配置APIKEY鉴权和SD... 目录豆包大模型概述开通模型付费安装 SDK 环境配置 API KEY 鉴权Ark 模型接口Prompt

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert