【论文笔记】动态蛇卷积(Dynamic Snake Convolution)

2023-12-20 15:28

本文主要是介绍【论文笔记】动态蛇卷积(Dynamic Snake Convolution),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

精确分割拓扑管状结构例如血管和道路,对医疗各个领域至关重要,可确保下游任务的准确性和效率。然而许多因素使分割任务变得复杂,包括细小脆弱的局部结构和复杂多变的全局形态。针对这个问题,作者提出了动态蛇卷积,该结构在管状分割任务上获得了极好的性能。

论文:Dynamic Snake Convolution based on Topological Geometric Constraints for Tubular Structure Segmentation

中文论文:拓扑几何约束管状结构分割的动态蛇卷积

代码:https://github.com/yaoleiqi/dscnet

一、适用场景

管状目标分割的特点是细长且复杂,标准卷积、空洞卷积无法更具目标特征调整关注区域,可变形卷积可以更具特征自适应学习感兴趣区域,但是对于管状目标,可变形卷积无法限制关注区域的连通性,而动态蛇卷积限制了关注区域的连通性,是的其更适合管状场景。

二、动态蛇卷积

对于一个标准3x3的2D卷积核K,其表示为:

为了赋予卷积核更多灵活性,使其能够聚焦于目标 的复杂几何特征,受到可变形卷积的启发,引入了变形偏 移 ∆。然而,如果模型被完全自由地学习变形偏移,感知场往往会偏离目标,特别是在处理细长管状结构的情 况下。因此,作者采用了一个迭代策略(下图),依次选 择每个要处理的目标的下一个位置进行观察,从而确保关注的连续性,不会由于大的变形偏移而将感知范围扩 散得太远。

在动态蛇形卷积中,作者将标准卷积核在 x 轴和 y 轴方向都进行了直线化。考虑一个大小为 9 的卷积 核,以 x 轴方向为例,K 中每个网格的具体位置表示 为:Ki±c = (xi±c, yi±c),其中 c = 0, 1, 2, 3, 4 表示距离 中心网格的水平距离。卷积核 K 中每个网格位置 Ki±c 的选择是一个累积过程。从中心位置 Ki 开始,远离中 心网格的位置取决于前一个网格的位置:Ki+1 相对于 Ki 增加了偏移量 ∆ = {δ|δ ∈ [−1, 1]}。因此,偏移量 需要进行累加 Σ,从而确保卷积核符合线性形态结构。 上图中 x 轴方向的变化为:

y轴方向的变化为:

由于偏移量 ∆ 通常是小数,然而坐标通常是整数 形式,因此采用双线性插值,表示为:

其中,K 表示方程 2和方程 3的小数位置,K′ 列 举所有整数空间位置,B 是双线性插值核,可以分解为 两个一维核,即:

再给个整体图:

三、代码

蛇卷积的代码如下:

# -*- coding: utf-8 -*-
import os
import torch
from torch import nn
import einops"""Dynamic Snake Convolution Module"""class DSConv_pro(nn.Module):def __init__(self,in_channels: int = 1,out_channels: int = 1,kernel_size: int = 9,extend_scope: float = 1.0,morph: int = 0,if_offset: bool = True,device: str | torch.device = "cuda",):"""A Dynamic Snake Convolution ImplementationBased on:TODOArgs:in_ch: number of input channels. Defaults to 1.out_ch: number of output channels. Defaults to 1.kernel_size: the size of kernel. Defaults to 9.extend_scope: the range to expand. Defaults to 1 for this method.morph: the morphology of the convolution kernel is mainly divided into two types along the x-axis (0) and the y-axis (1) (see the paper for details).if_offset: whether deformation is required,  if it is False, it is the standard convolution kernel. Defaults to True."""super().__init__()if morph not in (0, 1):raise ValueError("morph should be 0 or 1.")self.kernel_size = kernel_sizeself.extend_scope = extend_scopeself.morph = morphself.if_offset = if_offsetself.device = torch.device(device)self.to(device)# self.bn = nn.BatchNorm2d(2 * kernel_size)self.gn_offset = nn.GroupNorm(kernel_size, 2 * kernel_size)self.gn = nn.GroupNorm(out_channels // 4, out_channels)self.relu = nn.ReLU(inplace=True)self.tanh = nn.Tanh()self.offset_conv = nn.Conv2d(in_channels, 2 * kernel_size, 3, padding=1)self.dsc_conv_x = nn.Conv2d(in_channels,out_channels,kernel_size=(kernel_size, 1),stride=(kernel_size, 1),padding=0,)self.dsc_conv_y = nn.Conv2d(in_channels,out_channels,kernel_size=(1, kernel_size),stride=(1, kernel_size),padding=0,)def forward(self, input: torch.Tensor):# Predict offset map between [-1, 1]offset = self.offset_conv(input)# offset = self.bn(offset)offset = self.gn_offset(offset)offset = self.tanh(offset)# Run deformative convy_coordinate_map, x_coordinate_map = get_coordinate_map_2D(offset=offset,morph=self.morph,extend_scope=self.extend_scope,device=self.device,)deformed_feature = get_interpolated_feature(input,y_coordinate_map,x_coordinate_map,)if self.morph == 0:output = self.dsc_conv_x(deformed_feature)elif self.morph == 1:output = self.dsc_conv_y(deformed_feature)# Groupnorm & ReLUoutput = self.gn(output)output = self.relu(output)return outputdef get_coordinate_map_2D(offset: torch.Tensor,morph: int,extend_scope: float = 1.0,device: str | torch.device = "cuda",
):"""Computing 2D coordinate map of DSCNet based on: TODOArgs:offset: offset predict by network with shape [B, 2*K, W, H]. Here K refers to kernel size.morph: the morphology of the convolution kernel is mainly divided into two types along the x-axis (0) and the y-axis (1) (see the paper for details).extend_scope: the range to expand. Defaults to 1 for this method.device: location of data. Defaults to 'cuda'.Return:y_coordinate_map: coordinate map along y-axis with shape [B, K_H * H, K_W * W]x_coordinate_map: coordinate map along x-axis with shape [B, K_H * H, K_W * W]"""if morph not in (0, 1):raise ValueError("morph should be 0 or 1.")batch_size, _, width, height = offset.shapekernel_size = offset.shape[1] // 2center = kernel_size // 2device = torch.device(device)y_offset_, x_offset_ = torch.split(offset, kernel_size, dim=1)y_center_ = torch.arange(0, width, dtype=torch.float32, device=device)y_center_ = einops.repeat(y_center_, "w -> k w h", k=kernel_size, h=height)x_center_ = torch.arange(0, height, dtype=torch.float32, device=device)x_center_ = einops.repeat(x_center_, "h -> k w h", k=kernel_size, w=width)if morph == 0:"""Initialize the kernel and flatten the kernely: only need 0x: -num_points//2 ~ num_points//2 (Determined by the kernel size)"""y_spread_ = torch.zeros([kernel_size], device=device)x_spread_ = torch.linspace(-center, center, kernel_size, device=device)y_grid_ = einops.repeat(y_spread_, "k -> k w h", w=width, h=height)x_grid_ = einops.repeat(x_spread_, "k -> k w h", w=width, h=height)y_new_ = y_center_ + y_grid_x_new_ = x_center_ + x_grid_y_new_ = einops.repeat(y_new_, "k w h -> b k w h", b=batch_size)x_new_ = einops.repeat(x_new_, "k w h -> b k w h", b=batch_size)y_offset_ = einops.rearrange(y_offset_, "b k w h -> k b w h")y_offset_new_ = y_offset_.detach().clone()# The center position remains unchanged and the rest of the positions begin to swing# This part is quite simple. The main idea is that "offset is an iterative process"y_offset_new_[center] = 0for index in range(1, center + 1):y_offset_new_[center + index] = (y_offset_new_[center + index - 1] + y_offset_[center + index])y_offset_new_[center - index] = (y_offset_new_[center - index + 1] + y_offset_[center - index])y_offset_new_ = einops.rearrange(y_offset_new_, "k b w h -> b k w h")y_new_ = y_new_.add(y_offset_new_.mul(extend_scope))y_coordinate_map = einops.rearrange(y_new_, "b k w h -> b (w k) h")x_coordinate_map = einops.rearrange(x_new_, "b k w h -> b (w k) h")elif morph == 1:"""Initialize the kernel and flatten the kernely: -num_points//2 ~ num_points//2 (Determined by the kernel size)x: only need 0"""y_spread_ = torch.linspace(-center, center, kernel_size, device=device)x_spread_ = torch.zeros([kernel_size], device=device)y_grid_ = einops.repeat(y_spread_, "k -> k w h", w=width, h=height)x_grid_ = einops.repeat(x_spread_, "k -> k w h", w=width, h=height)y_new_ = y_center_ + y_grid_x_new_ = x_center_ + x_grid_y_new_ = einops.repeat(y_new_, "k w h -> b k w h", b=batch_size)x_new_ = einops.repeat(x_new_, "k w h -> b k w h", b=batch_size)x_offset_ = einops.rearrange(x_offset_, "b k w h -> k b w h")x_offset_new_ = x_offset_.detach().clone()# The center position remains unchanged and the rest of the positions begin to swing# This part is quite simple. The main idea is that "offset is an iterative process"x_offset_new_[center] = 0for index in range(1, center + 1):x_offset_new_[center + index] = (x_offset_new_[center + index - 1] + x_offset_[center + index])x_offset_new_[center - index] = (x_offset_new_[center - index + 1] + x_offset_[center - index])x_offset_new_ = einops.rearrange(x_offset_new_, "k b w h -> b k w h")x_new_ = x_new_.add(x_offset_new_.mul(extend_scope))y_coordinate_map = einops.rearrange(y_new_, "b k w h -> b w (h k)")x_coordinate_map = einops.rearrange(x_new_, "b k w h -> b w (h k)")return y_coordinate_map, x_coordinate_mapdef get_interpolated_feature(input_feature: torch.Tensor,y_coordinate_map: torch.Tensor,x_coordinate_map: torch.Tensor,interpolate_mode: str = "bilinear",
):"""From coordinate map interpolate feature of DSCNet based on: TODOArgs:input_feature: feature that to be interpolated with shape [B, C, H, W]y_coordinate_map: coordinate map along y-axis with shape [B, K_H * H, K_W * W]x_coordinate_map: coordinate map along x-axis with shape [B, K_H * H, K_W * W]interpolate_mode: the arg 'mode' of nn.functional.grid_sample, can be 'bilinear' or 'bicubic' . Defaults to 'bilinear'.Return:interpolated_feature: interpolated feature with shape [B, C, K_H * H, K_W * W]"""if interpolate_mode not in ("bilinear", "bicubic"):raise ValueError("interpolate_mode should be 'bilinear' or 'bicubic'.")y_max = input_feature.shape[-2] - 1x_max = input_feature.shape[-1] - 1y_coordinate_map_ = _coordinate_map_scaling(y_coordinate_map, origin=[0, y_max])x_coordinate_map_ = _coordinate_map_scaling(x_coordinate_map, origin=[0, x_max])y_coordinate_map_ = torch.unsqueeze(y_coordinate_map_, dim=-1)x_coordinate_map_ = torch.unsqueeze(x_coordinate_map_, dim=-1)# Note here grid with shape [B, H, W, 2]# Where [:, :, :, 2] refers to [x ,y]grid = torch.cat([x_coordinate_map_, y_coordinate_map_], dim=-1)interpolated_feature = nn.functional.grid_sample(input=input_feature,grid=grid,mode=interpolate_mode,padding_mode="zeros",align_corners=True,)return interpolated_featuredef _coordinate_map_scaling(coordinate_map: torch.Tensor,origin: list,target: list = [-1, 1],
):"""Map the value of coordinate_map from origin=[min, max] to target=[a,b] for DSCNet based on: TODOArgs:coordinate_map: the coordinate map to be scaledorigin: original value range of coordinate map, e.g. [coordinate_map.min(), coordinate_map.max()]target: target value range of coordinate map,Defaults to [-1, 1]Return:coordinate_map_scaled: the coordinate map after scaling"""min, max = origina, b = targetcoordinate_map_scaled = torch.clamp(coordinate_map, min, max)scale_factor = (b - a) / (max - min)coordinate_map_scaled = a + scale_factor * (coordinate_map_scaled - min)return coordinate_map_scaled

这篇关于【论文笔记】动态蛇卷积(Dynamic Snake Convolution)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/516507

相关文章

利用Python快速搭建Markdown笔记发布系统

《利用Python快速搭建Markdown笔记发布系统》这篇文章主要为大家详细介绍了使用Python生态的成熟工具,在30分钟内搭建一个支持Markdown渲染、分类标签、全文搜索的私有化知识发布系统... 目录引言:为什么要自建知识博客一、技术选型:极简主义开发栈二、系统架构设计三、核心代码实现(分步解析

Java调用C++动态库超详细步骤讲解(附源码)

《Java调用C++动态库超详细步骤讲解(附源码)》C语言因其高效和接近硬件的特性,时常会被用在性能要求较高或者需要直接操作硬件的场合,:本文主要介绍Java调用C++动态库的相关资料,文中通过代... 目录一、直接调用C++库第一步:动态库生成(vs2017+qt5.12.10)第二步:Java调用C++

C#如何动态创建Label,及动态label事件

《C#如何动态创建Label,及动态label事件》:本文主要介绍C#如何动态创建Label,及动态label事件,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录C#如何动态创建Label,及动态label事件第一点:switch中的生成我们的label事件接着,

SpringCloud动态配置注解@RefreshScope与@Component的深度解析

《SpringCloud动态配置注解@RefreshScope与@Component的深度解析》在现代微服务架构中,动态配置管理是一个关键需求,本文将为大家介绍SpringCloud中相关的注解@Re... 目录引言1. @RefreshScope 的作用与原理1.1 什么是 @RefreshScope1.

MyBatis 动态 SQL 优化之标签的实战与技巧(常见用法)

《MyBatis动态SQL优化之标签的实战与技巧(常见用法)》本文通过详细的示例和实际应用场景,介绍了如何有效利用这些标签来优化MyBatis配置,提升开发效率,确保SQL的高效执行和安全性,感... 目录动态SQL详解一、动态SQL的核心概念1.1 什么是动态SQL?1.2 动态SQL的优点1.3 动态S

SpringBoot利用dynamic-datasource-spring-boot-starter解决多数据源问题

《SpringBoot利用dynamic-datasource-spring-boot-starter解决多数据源问题》dynamic-datasource-spring-boot-starter是一... 目录概要整体架构构想操作步骤创建数据源切换数据源后续问题小结概要自己闲暇时间想实现一个多租户平台,

mybatis-plus 实现查询表名动态修改的示例代码

《mybatis-plus实现查询表名动态修改的示例代码》通过MyBatis-Plus实现表名的动态替换,根据配置或入参选择不同的表,本文主要介绍了mybatis-plus实现查询表名动态修改的示... 目录实现数据库初始化依赖包配置读取类设置 myBATis-plus 插件测试通过 mybatis-plu

基于Canvas的Html5多时区动态时钟实战代码

《基于Canvas的Html5多时区动态时钟实战代码》:本文主要介绍了如何使用Canvas在HTML5上实现一个多时区动态时钟的web展示,通过Canvas的API,可以绘制出6个不同城市的时钟,并且这些时钟可以动态转动,每个时钟上都会标注出对应的24小时制时间,详细内容请阅读本文,希望能对你有所帮助...

Vue中动态权限到按钮的完整实现方案详解

《Vue中动态权限到按钮的完整实现方案详解》这篇文章主要为大家详细介绍了Vue如何在现有方案的基础上加入对路由的增、删、改、查权限控制,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、数据库设计扩展1.1 修改路由表(routes)1.2 修改角色与路由权限表(role_routes)二、后端接口设计

前端 CSS 动态设置样式::class、:style 等技巧(推荐)

《前端CSS动态设置样式::class、:style等技巧(推荐)》:本文主要介绍了Vue.js中动态绑定类名和内联样式的两种方法:对象语法和数组语法,通过对象语法,可以根据条件动态切换类名或样式;通过数组语法,可以同时绑定多个类名或样式,此外,还可以结合计算属性来生成复杂的类名或样式对象,详细内容请阅读本文,希望能对你有所帮助...