【论文笔记】动态蛇卷积(Dynamic Snake Convolution)

2023-12-20 15:28

本文主要是介绍【论文笔记】动态蛇卷积(Dynamic Snake Convolution),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

精确分割拓扑管状结构例如血管和道路,对医疗各个领域至关重要,可确保下游任务的准确性和效率。然而许多因素使分割任务变得复杂,包括细小脆弱的局部结构和复杂多变的全局形态。针对这个问题,作者提出了动态蛇卷积,该结构在管状分割任务上获得了极好的性能。

论文:Dynamic Snake Convolution based on Topological Geometric Constraints for Tubular Structure Segmentation

中文论文:拓扑几何约束管状结构分割的动态蛇卷积

代码:https://github.com/yaoleiqi/dscnet

一、适用场景

管状目标分割的特点是细长且复杂,标准卷积、空洞卷积无法更具目标特征调整关注区域,可变形卷积可以更具特征自适应学习感兴趣区域,但是对于管状目标,可变形卷积无法限制关注区域的连通性,而动态蛇卷积限制了关注区域的连通性,是的其更适合管状场景。

二、动态蛇卷积

对于一个标准3x3的2D卷积核K,其表示为:

为了赋予卷积核更多灵活性,使其能够聚焦于目标 的复杂几何特征,受到可变形卷积的启发,引入了变形偏 移 ∆。然而,如果模型被完全自由地学习变形偏移,感知场往往会偏离目标,特别是在处理细长管状结构的情 况下。因此,作者采用了一个迭代策略(下图),依次选 择每个要处理的目标的下一个位置进行观察,从而确保关注的连续性,不会由于大的变形偏移而将感知范围扩 散得太远。

在动态蛇形卷积中,作者将标准卷积核在 x 轴和 y 轴方向都进行了直线化。考虑一个大小为 9 的卷积 核,以 x 轴方向为例,K 中每个网格的具体位置表示 为:Ki±c = (xi±c, yi±c),其中 c = 0, 1, 2, 3, 4 表示距离 中心网格的水平距离。卷积核 K 中每个网格位置 Ki±c 的选择是一个累积过程。从中心位置 Ki 开始,远离中 心网格的位置取决于前一个网格的位置:Ki+1 相对于 Ki 增加了偏移量 ∆ = {δ|δ ∈ [−1, 1]}。因此,偏移量 需要进行累加 Σ,从而确保卷积核符合线性形态结构。 上图中 x 轴方向的变化为:

y轴方向的变化为:

由于偏移量 ∆ 通常是小数,然而坐标通常是整数 形式,因此采用双线性插值,表示为:

其中,K 表示方程 2和方程 3的小数位置,K′ 列 举所有整数空间位置,B 是双线性插值核,可以分解为 两个一维核,即:

再给个整体图:

三、代码

蛇卷积的代码如下:

# -*- coding: utf-8 -*-
import os
import torch
from torch import nn
import einops"""Dynamic Snake Convolution Module"""class DSConv_pro(nn.Module):def __init__(self,in_channels: int = 1,out_channels: int = 1,kernel_size: int = 9,extend_scope: float = 1.0,morph: int = 0,if_offset: bool = True,device: str | torch.device = "cuda",):"""A Dynamic Snake Convolution ImplementationBased on:TODOArgs:in_ch: number of input channels. Defaults to 1.out_ch: number of output channels. Defaults to 1.kernel_size: the size of kernel. Defaults to 9.extend_scope: the range to expand. Defaults to 1 for this method.morph: the morphology of the convolution kernel is mainly divided into two types along the x-axis (0) and the y-axis (1) (see the paper for details).if_offset: whether deformation is required,  if it is False, it is the standard convolution kernel. Defaults to True."""super().__init__()if morph not in (0, 1):raise ValueError("morph should be 0 or 1.")self.kernel_size = kernel_sizeself.extend_scope = extend_scopeself.morph = morphself.if_offset = if_offsetself.device = torch.device(device)self.to(device)# self.bn = nn.BatchNorm2d(2 * kernel_size)self.gn_offset = nn.GroupNorm(kernel_size, 2 * kernel_size)self.gn = nn.GroupNorm(out_channels // 4, out_channels)self.relu = nn.ReLU(inplace=True)self.tanh = nn.Tanh()self.offset_conv = nn.Conv2d(in_channels, 2 * kernel_size, 3, padding=1)self.dsc_conv_x = nn.Conv2d(in_channels,out_channels,kernel_size=(kernel_size, 1),stride=(kernel_size, 1),padding=0,)self.dsc_conv_y = nn.Conv2d(in_channels,out_channels,kernel_size=(1, kernel_size),stride=(1, kernel_size),padding=0,)def forward(self, input: torch.Tensor):# Predict offset map between [-1, 1]offset = self.offset_conv(input)# offset = self.bn(offset)offset = self.gn_offset(offset)offset = self.tanh(offset)# Run deformative convy_coordinate_map, x_coordinate_map = get_coordinate_map_2D(offset=offset,morph=self.morph,extend_scope=self.extend_scope,device=self.device,)deformed_feature = get_interpolated_feature(input,y_coordinate_map,x_coordinate_map,)if self.morph == 0:output = self.dsc_conv_x(deformed_feature)elif self.morph == 1:output = self.dsc_conv_y(deformed_feature)# Groupnorm & ReLUoutput = self.gn(output)output = self.relu(output)return outputdef get_coordinate_map_2D(offset: torch.Tensor,morph: int,extend_scope: float = 1.0,device: str | torch.device = "cuda",
):"""Computing 2D coordinate map of DSCNet based on: TODOArgs:offset: offset predict by network with shape [B, 2*K, W, H]. Here K refers to kernel size.morph: the morphology of the convolution kernel is mainly divided into two types along the x-axis (0) and the y-axis (1) (see the paper for details).extend_scope: the range to expand. Defaults to 1 for this method.device: location of data. Defaults to 'cuda'.Return:y_coordinate_map: coordinate map along y-axis with shape [B, K_H * H, K_W * W]x_coordinate_map: coordinate map along x-axis with shape [B, K_H * H, K_W * W]"""if morph not in (0, 1):raise ValueError("morph should be 0 or 1.")batch_size, _, width, height = offset.shapekernel_size = offset.shape[1] // 2center = kernel_size // 2device = torch.device(device)y_offset_, x_offset_ = torch.split(offset, kernel_size, dim=1)y_center_ = torch.arange(0, width, dtype=torch.float32, device=device)y_center_ = einops.repeat(y_center_, "w -> k w h", k=kernel_size, h=height)x_center_ = torch.arange(0, height, dtype=torch.float32, device=device)x_center_ = einops.repeat(x_center_, "h -> k w h", k=kernel_size, w=width)if morph == 0:"""Initialize the kernel and flatten the kernely: only need 0x: -num_points//2 ~ num_points//2 (Determined by the kernel size)"""y_spread_ = torch.zeros([kernel_size], device=device)x_spread_ = torch.linspace(-center, center, kernel_size, device=device)y_grid_ = einops.repeat(y_spread_, "k -> k w h", w=width, h=height)x_grid_ = einops.repeat(x_spread_, "k -> k w h", w=width, h=height)y_new_ = y_center_ + y_grid_x_new_ = x_center_ + x_grid_y_new_ = einops.repeat(y_new_, "k w h -> b k w h", b=batch_size)x_new_ = einops.repeat(x_new_, "k w h -> b k w h", b=batch_size)y_offset_ = einops.rearrange(y_offset_, "b k w h -> k b w h")y_offset_new_ = y_offset_.detach().clone()# The center position remains unchanged and the rest of the positions begin to swing# This part is quite simple. The main idea is that "offset is an iterative process"y_offset_new_[center] = 0for index in range(1, center + 1):y_offset_new_[center + index] = (y_offset_new_[center + index - 1] + y_offset_[center + index])y_offset_new_[center - index] = (y_offset_new_[center - index + 1] + y_offset_[center - index])y_offset_new_ = einops.rearrange(y_offset_new_, "k b w h -> b k w h")y_new_ = y_new_.add(y_offset_new_.mul(extend_scope))y_coordinate_map = einops.rearrange(y_new_, "b k w h -> b (w k) h")x_coordinate_map = einops.rearrange(x_new_, "b k w h -> b (w k) h")elif morph == 1:"""Initialize the kernel and flatten the kernely: -num_points//2 ~ num_points//2 (Determined by the kernel size)x: only need 0"""y_spread_ = torch.linspace(-center, center, kernel_size, device=device)x_spread_ = torch.zeros([kernel_size], device=device)y_grid_ = einops.repeat(y_spread_, "k -> k w h", w=width, h=height)x_grid_ = einops.repeat(x_spread_, "k -> k w h", w=width, h=height)y_new_ = y_center_ + y_grid_x_new_ = x_center_ + x_grid_y_new_ = einops.repeat(y_new_, "k w h -> b k w h", b=batch_size)x_new_ = einops.repeat(x_new_, "k w h -> b k w h", b=batch_size)x_offset_ = einops.rearrange(x_offset_, "b k w h -> k b w h")x_offset_new_ = x_offset_.detach().clone()# The center position remains unchanged and the rest of the positions begin to swing# This part is quite simple. The main idea is that "offset is an iterative process"x_offset_new_[center] = 0for index in range(1, center + 1):x_offset_new_[center + index] = (x_offset_new_[center + index - 1] + x_offset_[center + index])x_offset_new_[center - index] = (x_offset_new_[center - index + 1] + x_offset_[center - index])x_offset_new_ = einops.rearrange(x_offset_new_, "k b w h -> b k w h")x_new_ = x_new_.add(x_offset_new_.mul(extend_scope))y_coordinate_map = einops.rearrange(y_new_, "b k w h -> b w (h k)")x_coordinate_map = einops.rearrange(x_new_, "b k w h -> b w (h k)")return y_coordinate_map, x_coordinate_mapdef get_interpolated_feature(input_feature: torch.Tensor,y_coordinate_map: torch.Tensor,x_coordinate_map: torch.Tensor,interpolate_mode: str = "bilinear",
):"""From coordinate map interpolate feature of DSCNet based on: TODOArgs:input_feature: feature that to be interpolated with shape [B, C, H, W]y_coordinate_map: coordinate map along y-axis with shape [B, K_H * H, K_W * W]x_coordinate_map: coordinate map along x-axis with shape [B, K_H * H, K_W * W]interpolate_mode: the arg 'mode' of nn.functional.grid_sample, can be 'bilinear' or 'bicubic' . Defaults to 'bilinear'.Return:interpolated_feature: interpolated feature with shape [B, C, K_H * H, K_W * W]"""if interpolate_mode not in ("bilinear", "bicubic"):raise ValueError("interpolate_mode should be 'bilinear' or 'bicubic'.")y_max = input_feature.shape[-2] - 1x_max = input_feature.shape[-1] - 1y_coordinate_map_ = _coordinate_map_scaling(y_coordinate_map, origin=[0, y_max])x_coordinate_map_ = _coordinate_map_scaling(x_coordinate_map, origin=[0, x_max])y_coordinate_map_ = torch.unsqueeze(y_coordinate_map_, dim=-1)x_coordinate_map_ = torch.unsqueeze(x_coordinate_map_, dim=-1)# Note here grid with shape [B, H, W, 2]# Where [:, :, :, 2] refers to [x ,y]grid = torch.cat([x_coordinate_map_, y_coordinate_map_], dim=-1)interpolated_feature = nn.functional.grid_sample(input=input_feature,grid=grid,mode=interpolate_mode,padding_mode="zeros",align_corners=True,)return interpolated_featuredef _coordinate_map_scaling(coordinate_map: torch.Tensor,origin: list,target: list = [-1, 1],
):"""Map the value of coordinate_map from origin=[min, max] to target=[a,b] for DSCNet based on: TODOArgs:coordinate_map: the coordinate map to be scaledorigin: original value range of coordinate map, e.g. [coordinate_map.min(), coordinate_map.max()]target: target value range of coordinate map,Defaults to [-1, 1]Return:coordinate_map_scaled: the coordinate map after scaling"""min, max = origina, b = targetcoordinate_map_scaled = torch.clamp(coordinate_map, min, max)scale_factor = (b - a) / (max - min)coordinate_map_scaled = a + scale_factor * (coordinate_map_scaled - min)return coordinate_map_scaled

这篇关于【论文笔记】动态蛇卷积(Dynamic Snake Convolution)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/516507

相关文章

VUE动态绑定class类的三种常用方式及适用场景详解

《VUE动态绑定class类的三种常用方式及适用场景详解》文章介绍了在实际开发中动态绑定class的三种常见情况及其解决方案,包括根据不同的返回值渲染不同的class样式、给模块添加基础样式以及根据设... 目录前言1.动态选择class样式(对象添加:情景一)2.动态添加一个class样式(字符串添加:情

SpringCloud配置动态更新原理解析

《SpringCloud配置动态更新原理解析》在微服务架构的浩瀚星海中,服务配置的动态更新如同魔法一般,能够让应用在不重启的情况下,实时响应配置的变更,SpringCloud作为微服务架构中的佼佼者,... 目录一、SpringBoot、Cloud配置的读取二、SpringCloud配置动态刷新三、更新@R

如何用Python绘制简易动态圣诞树

《如何用Python绘制简易动态圣诞树》这篇文章主要给大家介绍了关于如何用Python绘制简易动态圣诞树,文中讲解了如何通过编写代码来实现特定的效果,包括代码的编写技巧和效果的展示,需要的朋友可以参考... 目录代码:效果:总结 代码:import randomimport timefrom math

C# dynamic类型使用详解

《C#dynamic类型使用详解》C#中的dynamic类型允许在运行时确定对象的类型和成员,跳过编译时类型检查,适用于处理未知类型的对象或与动态语言互操作,dynamic支持动态成员解析、添加和删... 目录简介dynamic 的定义dynamic 的使用动态类型赋值访问成员动态方法调用dynamic 的

Java中JSON字符串反序列化(动态泛型)

《Java中JSON字符串反序列化(动态泛型)》文章讨论了在定时任务中使用反射调用目标对象时处理动态参数的问题,通过将方法参数存储为JSON字符串并进行反序列化,可以实现动态调用,然而,这种方式容易导... 需求:定时任务扫描,反射调用目标对象,但是,方法的传参不是固定的。方案一:将方法参数存成jsON字

.NET利用C#字节流动态操作Excel文件

《.NET利用C#字节流动态操作Excel文件》在.NET开发中,通过字节流动态操作Excel文件提供了一种高效且灵活的方式处理数据,本文将演示如何在.NET平台使用C#通过字节流创建,读取,编辑及保... 目录用C#创建并保存Excel工作簿为字节流用C#通过字节流直接读取Excel文件数据用C#通过字节

第10章 中断和动态时钟显示

第10章 中断和动态时钟显示 从本章开始,按照书籍的划分,第10章开始就进入保护模式(Protected Mode)部分了,感觉从这里开始难度突然就增加了。 书中介绍了为什么有中断(Interrupt)的设计,中断的几种方式:外部硬件中断、内部中断和软中断。通过中断做了一个会走的时钟和屏幕上输入字符的程序。 我自己理解中断的一些作用: 为了更好的利用处理器的性能。协同快速和慢速设备一起工作

动态规划---打家劫舍

题目: 你是一个专业的小偷,计划偷窃沿街的房屋。每间房内都藏有一定的现金,影响你偷窃的唯一制约因素就是相邻的房屋装有相互连通的防盗系统,如果两间相邻的房屋在同一晚上被小偷闯入,系统会自动报警。 给定一个代表每个房屋存放金额的非负整数数组,计算你 不触动警报装置的情况下 ,一夜之内能够偷窃到的最高金额。 思路: 动态规划五部曲: 1.确定dp数组及含义 dp数组是一维数组,dp[i]代表

AI hospital 论文Idea

一、Benchmarking Large Language Models on Communicative Medical Coaching: A Dataset and a Novel System论文地址含代码 大多数现有模型和工具主要迎合以患者为中心的服务。这项工作深入探讨了LLMs在提高医疗专业人员的沟通能力。目标是构建一个模拟实践环境,人类医生(即医学学习者)可以在其中与患者代理进行医学

【学习笔记】 陈强-机器学习-Python-Ch15 人工神经网络(1)sklearn

系列文章目录 监督学习:参数方法 【学习笔记】 陈强-机器学习-Python-Ch4 线性回归 【学习笔记】 陈强-机器学习-Python-Ch5 逻辑回归 【课后题练习】 陈强-机器学习-Python-Ch5 逻辑回归(SAheart.csv) 【学习笔记】 陈强-机器学习-Python-Ch6 多项逻辑回归 【学习笔记 及 课后题练习】 陈强-机器学习-Python-Ch7 判别分析 【学