机器人中的数值优化(六)—— 线搜索最速下降法

2023-12-20 09:20

本文主要是介绍机器人中的数值优化(六)—— 线搜索最速下降法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

   本系列文章主要是我在学习《数值优化》过程中的一些笔记和相关思考,主要的学习资料是深蓝学院的课程《机器人中的数值优化》和高立编著的《数值最优化方法》等,本系列文章篇数较多,不定期更新,上半部分介绍无约束优化,下半部分介绍带约束的优化,中间会穿插一些路径规划方面的应用实例



   八、线搜索最速下降法

   1、最速梯度下降法简介

   梯度下降是迭代法的一种,可以用于求解最小二乘问题(线性和非线性都可以)。在求解机器学习算法的模型参数,即无约束优化问题时,梯度下降(Gradient Descent)是最常采用的方法之一,另一种常用的方法是最小二乘法。在求解损失函数的最小值时,可以通过梯度下降法来一步步的迭代求解,得到最小化的损失函数和模型参数值。反过来,如果我们需要求解损失函数的最大值,这时就需要用梯度上升法来迭代了。在机器学习中,基于基本的梯度下降法发展了两种梯度下降方法,分别为随机梯度下降法和批量梯度下降法。

   最速梯度下降法利用函数的一阶信息局部的去找一个让函数下降最快的方向,然后沿着这个方向不断的逼近局部极小值

   对于有梯度的函数而言,最速下降的方向一定是其梯度的反方向(如下图中的蓝色箭头所示)

   如果梯度存在,沿着梯度的反方向去更新一个x,一定会更接近于局部极小值,迭代格式如下式所示,其中τ是步长, ∇ f ( x k ) \nabla\text{}f\left(x^k\right)\quad\text{} f(xk)是梯度或最小范数次梯度(次梯度集合里面模长最小的那个向量取反方向)

   x k + 1 = x k − τ ∇ f ( x k ) x^{k+1}=x^{k}-τ\nabla\text{}f\left(x^k\right)\quad\text{} xk+1=xkτf(xk)



   2、最速梯度下降法流程


   3、步长τ的选取

   ① 策略1:τ取固定常量,如1、0.1、0.01等

   ② 策略2:τ取递减量,随着搜索的次数增加而减小

   ③ 策略3:精确线搜索,理想的方式,每次搜索的步长都沿着搜索方向让多元函数的截面到达最低点,称为最佳步长,沿着搜索方向下降最多的步长。然而找最佳步长本身就是一个优化的问题。

   ④ 策略4:非精确线搜索,将策略3的条件进行弱化,使得搜索步长不需要解决子优化问题,也可以快速的搜索


   内容补充:一阶方向导数表示函数在该点处沿着方向d的函数值的变化率,可表示成如下的形式

   ∂ f ( x ) ∂ d = 1 ∥ d ∥ ∇ f ( x ) T d ; \frac{\partial f\left(x\right)}{\partial d}=\frac{1}{\left\|d\right\|}\nabla f(x)^{T}d; df(x)=d1f(x)Td;


   (1)策略①, τ取固定常量时,若步长太大,可能振荡发散;步长太小,可能收敛过慢,当步长恰当时,快速收敛。因此固定步长策略需要依靠经验设定合适的步长,如下图所示:


   (2) 策略②的稳定性较强,但收敛速度较慢,一般用于对函数的条件很差的时候,并且对于求解速率和时间没什么要求的时候。


   (3) 策略④,我们可以沿着搜索方向d,把周围的函数 f ( x k ) f(x^{k}) fxk解出一个一维的函数,这个函数的意思就是,当步长取α时,对应函数的高度就是图中曲线,φ(0)值是 f f f f ( x k ) f(x^{k}) fxk处的初始值

   如果仅是让函数下降的话,跟初始值φ(0)齐平以下的所有区域都可以选,如下图所示的0~α2区域,但是为了更快的下降,需要更严苛的条件,这个条件是跟梯度有关的,比如若局部极小值为1,而当前解为1.001,无论如何不能让函数的下降大于0.001,因此,我们要根据函数当前的梯度或者斜域来定充分下降的斜对数,它的斜率就是φ(0)的斜率,即搜索方向d与 x k x^{k} xk处梯度的点积 d T ∇ f ( x k ) d^{\mathrm{T}}\nabla f(x^{k}) dTf(xk),再乘以一个0~1的系数c对其进行放松,得到一个更小的区间0 ~ α1,一般来说,我们需要找一个不接近于0的步长,在这个Armijo condition 区域内搜索一个较靠右的步长,即我们想要的步长。

   对于非凸函数的可接受区域如下图所示:


   4、最速下降法流程及策略③和④的比较

   给定一个x0,首先求他的梯度,取负梯度为它的搜索方向,然后利用二分法不断的二分α区间去找一个满足Armijo condition的步长α,然后接受他,去更新下一个x的位置,不断的循环,当f在xk处的梯度的模长足够小时,结束循环。(当不可微时,梯度改为次微分检验,即含零向量时,即可结束循环)


   策略③只有找到上图中的最低点时,才进行更新,而策略④只要找到的步长位于Armijo condition 区域内即可进行更新。这样会节省一些时间,而且更简单一些,在工程中策略④更常用

   从下图中可以看出,若采用精确线搜索(策略③),只需要寥寥几步更新就可以收敛较理想的状态,若采用充分下降线搜索(策略④)可能需要迭代多次更新,但是精确线搜索每次迭代花费算力较多,时间较长,而充分下降搜索耗时较少,所以总的花费时间≈单次耗时x迭代次数。两种策略的总耗时是近似的。


   在下图所示的这样一个100维的凸函数的例子中,当精度要求比较高时,如0.0001,两种策略的迭代次数近似,而策略③的每次迭代耗时多于策略④


   5、最速下降法的收敛速度

   u在G度量意义下的范数 ∥ u ∥ G 2 \|u\|_G^2 uG2定义为:(其中G为Hesse矩阵)

   ∥ u ∥ G 2 = u T G u . \|u\|_G^2={u}^\mathrm{T}Gu. uG2=uTGu.

   对正定二次函数,最速下降方法的收敛速度为

   ∥ x k + 1 − x ∗ ∥ G 2 ∥ x k − x ∗ ∥ G ⩽ ( λ max − λ min λ max + λ min ) 2 . \frac{\|x_{k+1}-x^*\|_G^2}{\|x_k-x^*\|_G}\leqslant\left(\frac{\lambda_{\text{max}}-\lambda_{\text{min}}}{\lambda_{\text{max}}+\lambda_{\text{min}}}\right)^2. xkxGxk+1xG2(λmax+λminλmaxλmin)2.

   上式中有 :(其中 cond ⁡ ( G ) = ∥ G ∥ ∥ G − 1 ∥ \operatorname{cond}(G)=\|G\|\|G^{-1}\| cond(G)=G∥∥G1称为矩阵G的条件数)

   λ max ⁡ − λ min ⁡ λ max ⁡ + λ min ⁡ = c o n d ( G ) − 1 c o n d ( G ) + 1 ≜ μ \frac{\lambda_{\max}-\lambda_{\min}}{\lambda_{\max}+\lambda_{\min}}=\frac{\mathrm{cond}(G)-1}{\mathrm{cond}(G)+1}\triangleq\mu λmax+λminλmaxλmin=cond(G)+1cond(G)1μ.

   由上式可以看出,最速下降方法的收敛速度依赖于G的条件数.当G的条件数接近于1时, u接近于零,最速下降方法的收敛速度接近于超线性收敛速度;而G的条件数越大,u越接近于1,该方法的收敛速度越慢.

   Hesse矩阵G的条件数的差异造成了最速下降方法对如下图所示的两个问题收敛速度的差异.在下图可以看出,最速下降方法相邻两步的迭代方向互相垂直,Hesse矩阵的条件数越大,二次函数一族椭圆的等高线越扁.可以想象,当目标函数的等高线为一族很扁的椭圆时,迭代在两个相互垂直的方向上交替进行.如果这两个方向没有一个指向极小点,迭代会相当缓慢,甚至收敛不到极小点.


   6、最速下降法的优缺点

   (1)缺点

   当一个凸函数的条件数等于2时,等高线是一系列的椭圆,他的梯度是垂直于椭圆的边界的,如果条件数很大,椭圆就很扁,用最速下降法来迭代就会产生一些震荡。


   当条件数更大,如100时,椭圆会更扁,由于梯度方向与等高线垂直,导致梯度方向近似于平行,需要震荡很久才能收敛到局部极小值。所以当函数的曲率很大,或者条件数很大的时候,采用梯度下降法可能需要很多的迭代次数。


   下图是一个二维的二次函数的例子,从图中可以看出,随着条件数的增大,收敛所需的迭代次数也随之增加


   (2)优点

   最速下降方法的优点是:算法每次迭代的计算量少,存储量亦少; 即使从一个不太好的初始点出发,算法产生的迭代点也可能接近极小点.



   参考资料:

   1、机器人中的数值优化

   2、梯度下降

   3、数值最优化方法(高立 编著)


这篇关于机器人中的数值优化(六)—— 线搜索最速下降法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/515521

相关文章

Vue3 的 shallowRef 和 shallowReactive:优化性能

大家对 Vue3 的 ref 和 reactive 都很熟悉,那么对 shallowRef 和 shallowReactive 是否了解呢? 在编程和数据结构中,“shallow”(浅层)通常指对数据结构的最外层进行操作,而不递归地处理其内部或嵌套的数据。这种处理方式关注的是数据结构的第一层属性或元素,而忽略更深层次的嵌套内容。 1. 浅层与深层的对比 1.1 浅层(Shallow) 定义

HDFS—存储优化(纠删码)

纠删码原理 HDFS 默认情况下,一个文件有3个副本,这样提高了数据的可靠性,但也带来了2倍的冗余开销。 Hadoop3.x 引入了纠删码,采用计算的方式,可以节省约50%左右的存储空间。 此种方式节约了空间,但是会增加 cpu 的计算。 纠删码策略是给具体一个路径设置。所有往此路径下存储的文件,都会执行此策略。 默认只开启对 RS-6-3-1024k

认识、理解、分类——acm之搜索

普通搜索方法有两种:1、广度优先搜索;2、深度优先搜索; 更多搜索方法: 3、双向广度优先搜索; 4、启发式搜索(包括A*算法等); 搜索通常会用到的知识点:状态压缩(位压缩,利用hash思想压缩)。

hdu1240、hdu1253(三维搜索题)

1、从后往前输入,(x,y,z); 2、从下往上输入,(y , z, x); 3、从左往右输入,(z,x,y); hdu1240代码如下: #include<iostream>#include<algorithm>#include<string>#include<stack>#include<queue>#include<map>#include<stdio.h>#inc

使用opencv优化图片(画面变清晰)

文章目录 需求影响照片清晰度的因素 实现降噪测试代码 锐化空间锐化Unsharp Masking频率域锐化对比测试 对比度增强常用算法对比测试 需求 对图像进行优化,使其看起来更清晰,同时保持尺寸不变,通常涉及到图像处理技术如锐化、降噪、对比度增强等 影响照片清晰度的因素 影响照片清晰度的因素有很多,主要可以从以下几个方面来分析 1. 拍摄设备 相机传感器:相机传

MySQL高性能优化规范

前言:      笔者最近上班途中突然想丰富下自己的数据库优化技能。于是在查阅了多篇文章后,总结出了这篇! 数据库命令规范 所有数据库对象名称必须使用小写字母并用下划线分割 所有数据库对象名称禁止使用mysql保留关键字(如果表名中包含关键字查询时,需要将其用单引号括起来) 数据库对象的命名要能做到见名识意,并且最后不要超过32个字符 临时库表必须以tmp_为前缀并以日期为后缀,备份

SWAP作物生长模型安装教程、数据制备、敏感性分析、气候变化影响、R模型敏感性分析与贝叶斯优化、Fortran源代码分析、气候数据降尺度与变化影响分析

查看原文>>>全流程SWAP农业模型数据制备、敏感性分析及气候变化影响实践技术应用 SWAP模型是由荷兰瓦赫宁根大学开发的先进农作物模型,它综合考虑了土壤-水分-大气以及植被间的相互作用;是一种描述作物生长过程的一种机理性作物生长模型。它不但运用Richard方程,使其能够精确的模拟土壤中水分的运动,而且耦合了WOFOST作物模型使作物的生长描述更为科学。 本文让更多的科研人员和农业工作者

hdu 4517 floyd+记忆化搜索

题意: 有n(100)个景点,m(1000)条路,时间限制为t(300),起点s,终点e。 访问每个景点需要时间cost_i,每个景点的访问价值为value_i。 点与点之间行走需要花费的时间为g[ i ] [ j ] 。注意点间可能有多条边。 走到一个点时可以选择访问或者不访问,并且当前点的访问价值应该严格大于前一个访问的点。 现在求,从起点出发,到达终点,在时间限制内,能得到的最大

AI基础 L9 Local Search II 局部搜索

Local Beam search 对于当前的所有k个状态,生成它们的所有可能后继状态。 检查生成的后继状态中是否有任何状态是解决方案。 如果所有后继状态都不是解决方案,则从所有后继状态中选择k个最佳状态。 当达到预设的迭代次数或满足某个终止条件时,算法停止。 — Choose k successors randomly, biased towards good ones — Close

hdu4277搜索

给你n个有长度的线段,问如果用上所有的线段来拼1个三角形,最多能拼出多少种不同的? import java.io.BufferedInputStream;import java.io.BufferedReader;import java.io.IOException;import java.io.InputStream;import java.io.InputStreamReader;