利用进化算法+多进程/多线程来优化SVM中的两个参数:C和Gamma

2023-12-20 06:18

本文主要是介绍利用进化算法+多进程/多线程来优化SVM中的两个参数:C和Gamma,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

该案例展示了如何利用进化算法+多进程/多线程来优化SVM中的两个参数:C和Gamma。
在执行本案例前,需要确保正确安装sklearn,以保证SVM部分的代码能够正常执行。
本函数需要用到一个外部数据集,存放在同目录下的iris.data中,
并且把iris.data按3:2划分为训练集数据iris_train.data和测试集数据iris_test.data。
有关该数据集的详细描述详见http://archive.ics.uci.edu/ml/datasets/Iris
在执行脚本main.py中设置PoolType字符串来控制采用的是多进程还是多线程。
注意:使用多进程时,程序必须以“if __name__ == '__main__':”作为入口,这个是multiprocessing的多进程模块的硬性要求。
# -*- coding: utf-8 -*-
import numpy as np
import geatpy as ea
from sklearn import svm
from sklearn import preprocessing
from sklearn.model_selection import cross_val_score
import multiprocessing as mp
from multiprocessing import Pool as ProcessPool
from multiprocessing.dummy import Pool as ThreadPool"""
该案例展示了如何利用进化算法+多进程/多线程来优化SVM中的两个参数:C和Gamma。
在执行本案例前,需要确保正确安装sklearn,以保证SVM部分的代码能够正常执行。
本函数需要用到一个外部数据集,存放在同目录下的iris.data中,
并且把iris.data按3:2划分为训练集数据iris_train.data和测试集数据iris_test.data。
有关该数据集的详细描述详见http://archive.ics.uci.edu/ml/datasets/Iris
在执行脚本main.py中设置PoolType字符串来控制采用的是多进程还是多线程。
注意:使用多进程时,程序必须以“if __name__ == '__main__':”作为入口,这个是multiprocessing的多进程模块的硬性要求。
"""class MyProblem(ea.Problem): # 继承Problem父类def __init__(self, PoolType): # PoolType是取值为'Process'或'Thread'的字符串name = 'MyProblem' # 初始化name(函数名称,可以随意设置)M = 1 # 初始化M(目标维数)maxormins = [-1] # 初始化maxormins(目标最小最大化标记列表,1:最小化该目标;-1:最大化该目标)Dim = 2 # 初始化Dim(决策变量维数)varTypes = [0, 0] # 初始化varTypes(决策变量的类型,元素为0表示对应的变量是连续的;1表示是离散的)lb = [2**(-8)] * Dim # 决策变量下界ub = [2**8] * Dim # 决策变量上界lbin = [1] * Dim # 决策变量下边界(0表示不包含该变量的下边界,1表示包含)ubin = [1] * Dim # 决策变量上边界(0表示不包含该变量的上边界,1表示包含)# 调用父类构造方法完成实例化ea.Problem.__init__(self, name, M, maxormins, Dim, varTypes, lb, ub, lbin, ubin)# 目标函数计算中用到的一些数据fp = open('iris_train.data')datas = []data_targets = []for line in fp.readlines():line_data = line.strip('\n').split(',')data = []for i in line_data[0:4]:data.append(float(i))datas.append(data)data_targets.append(line_data[4])fp.close()self.data = preprocessing.scale(np.array(datas)) # 训练集的特征数据(归一化)self.dataTarget = np.array(data_targets)# 设置用多线程还是多进程self.PoolType = PoolTypeif self.PoolType == 'Thread':self.pool = ThreadPool(2) # 设置池的大小elif self.PoolType == 'Process':num_cores = int(mp.cpu_count()) # 获得计算机的核心数self.pool = ProcessPool(num_cores) # 设置池的大小def aimFunc(self, pop): # 目标函数,采用多线程加速计算Vars = pop.Phen # 得到决策变量矩阵args = list(zip(list(range(pop.sizes)), [Vars] * pop.sizes, [self.data] * pop.sizes, [self.dataTarget] * pop.sizes))if self.PoolType == 'Thread':pop.ObjV = np.array(list(self.pool.map(subAimFunc, args)))elif self.PoolType == 'Process':result = self.pool.map_async(subAimFunc, args)result.wait()pop.ObjV = np.array(result.get())def test(self, C, G): # 代入优化后的C、Gamma对测试集进行检验# 读取测试集数据fp = open('iris_test.data')datas = []data_targets = []for line in fp.readlines():line_data = line.strip('\n').split(',')data = []for i in line_data[0:4]:data.append(float(i))datas.append(data)data_targets.append(line_data[4])fp.close()data_test = preprocessing.scale(np.array(datas)) # 测试集的特征数据(归一化)dataTarget_test = np.array(data_targets) # 测试集的标签数据svc = svm.SVC(C=C, kernel='rbf', gamma=G).fit(self.data, self.dataTarget) # 创建分类器对象并用训练集的数据拟合分类器模型dataTarget_predict = svc.predict(data_test) # 采用训练好的分类器对象对测试集数据进行预测print("测试集数据分类正确率 = %s%%"%(len(np.where(dataTarget_predict == dataTarget_test)[0]) / len(dataTarget_test) * 100))def subAimFunc(args):i = args[0]Vars = args[1]data = args[2]dataTarget = args[3]C = Vars[i, 0]G = Vars[i, 1]svc = svm.SVC(C=C, kernel='rbf', gamma=G).fit(data, dataTarget) # 创建分类器对象并用训练集的数据拟合分类器模型scores = cross_val_score(svc, data, dataTarget, cv=30) # 计算交叉验证的得分ObjV_i = [scores.mean()] # 把交叉验证的平均得分作为目标函数值return ObjV_i

源代码

这篇关于利用进化算法+多进程/多线程来优化SVM中的两个参数:C和Gamma的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/515014

相关文章

SpringBoot分段处理List集合多线程批量插入数据方式

《SpringBoot分段处理List集合多线程批量插入数据方式》文章介绍如何处理大数据量List批量插入数据库的优化方案:通过拆分List并分配独立线程处理,结合Spring线程池与异步方法提升效率... 目录项目场景解决方案1.实体类2.Mapper3.spring容器注入线程池bejsan对象4.创建

JavaScript中比较两个数组是否有相同元素(交集)的三种常用方法

《JavaScript中比较两个数组是否有相同元素(交集)的三种常用方法》:本文主要介绍JavaScript中比较两个数组是否有相同元素(交集)的三种常用方法,每种方法结合实例代码给大家介绍的非常... 目录引言:为什么"相等"判断如此重要?方法1:使用some()+includes()(适合小数组)方法2

SpringBoot 获取请求参数的常用注解及用法

《SpringBoot获取请求参数的常用注解及用法》SpringBoot通过@RequestParam、@PathVariable等注解支持从HTTP请求中获取参数,涵盖查询、路径、请求体、头、C... 目录SpringBoot 提供了多种注解来方便地从 HTTP 请求中获取参数以下是主要的注解及其用法:1

HTTP 与 SpringBoot 参数提交与接收协议方式

《HTTP与SpringBoot参数提交与接收协议方式》HTTP参数提交方式包括URL查询、表单、JSON/XML、路径变量、头部、Cookie、GraphQL、WebSocket和SSE,依据... 目录HTTP 协议支持多种参数提交方式,主要取决于请求方法(Method)和内容类型(Content-Ty

从原理到实战解析Java Stream 的并行流性能优化

《从原理到实战解析JavaStream的并行流性能优化》本文给大家介绍JavaStream的并行流性能优化:从原理到实战的全攻略,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的... 目录一、并行流的核心原理与适用场景二、性能优化的核心策略1. 合理设置并行度:打破默认阈值2. 避免装箱

Python实战之SEO优化自动化工具开发指南

《Python实战之SEO优化自动化工具开发指南》在数字化营销时代,搜索引擎优化(SEO)已成为网站获取流量的重要手段,本文将带您使用Python开发一套完整的SEO自动化工具,需要的可以了解下... 目录前言项目概述技术栈选择核心模块实现1. 关键词研究模块2. 网站技术seo检测模块3. 内容优化分析模

Java实现复杂查询优化的7个技巧小结

《Java实现复杂查询优化的7个技巧小结》在Java项目中,复杂查询是开发者面临的“硬骨头”,本文将通过7个实战技巧,结合代码示例和性能对比,手把手教你如何让复杂查询变得优雅,大家可以根据需求进行选择... 目录一、复杂查询的痛点:为何你的代码“又臭又长”1.1冗余变量与中间状态1.2重复查询与性能陷阱1.

Python内存优化的实战技巧分享

《Python内存优化的实战技巧分享》Python作为一门解释型语言,虽然在开发效率上有着显著优势,但在执行效率方面往往被诟病,然而,通过合理的内存优化策略,我们可以让Python程序的运行速度提升3... 目录前言python内存管理机制引用计数机制垃圾回收机制内存泄漏的常见原因1. 循环引用2. 全局变

python中的显式声明类型参数使用方式

《python中的显式声明类型参数使用方式》文章探讨了Python3.10+版本中类型注解的使用,指出FastAPI官方示例强调显式声明参数类型,通过|操作符替代Union/Optional,可提升代... 目录背景python函数显式声明的类型汇总基本类型集合类型Optional and Union(py

Linux系统管理与进程任务管理方式

《Linux系统管理与进程任务管理方式》本文系统讲解Linux管理核心技能,涵盖引导流程、服务控制(Systemd与GRUB2)、进程管理(前台/后台运行、工具使用)、计划任务(at/cron)及常用... 目录引言一、linux系统引导过程与服务控制1.1 系统引导的五个关键阶段1.2 GRUB2的进化优