利用进化算法+多进程/多线程来优化SVM中的两个参数:C和Gamma

2023-12-20 06:18

本文主要是介绍利用进化算法+多进程/多线程来优化SVM中的两个参数:C和Gamma,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

该案例展示了如何利用进化算法+多进程/多线程来优化SVM中的两个参数:C和Gamma。
在执行本案例前,需要确保正确安装sklearn,以保证SVM部分的代码能够正常执行。
本函数需要用到一个外部数据集,存放在同目录下的iris.data中,
并且把iris.data按3:2划分为训练集数据iris_train.data和测试集数据iris_test.data。
有关该数据集的详细描述详见http://archive.ics.uci.edu/ml/datasets/Iris
在执行脚本main.py中设置PoolType字符串来控制采用的是多进程还是多线程。
注意:使用多进程时,程序必须以“if __name__ == '__main__':”作为入口,这个是multiprocessing的多进程模块的硬性要求。
# -*- coding: utf-8 -*-
import numpy as np
import geatpy as ea
from sklearn import svm
from sklearn import preprocessing
from sklearn.model_selection import cross_val_score
import multiprocessing as mp
from multiprocessing import Pool as ProcessPool
from multiprocessing.dummy import Pool as ThreadPool"""
该案例展示了如何利用进化算法+多进程/多线程来优化SVM中的两个参数:C和Gamma。
在执行本案例前,需要确保正确安装sklearn,以保证SVM部分的代码能够正常执行。
本函数需要用到一个外部数据集,存放在同目录下的iris.data中,
并且把iris.data按3:2划分为训练集数据iris_train.data和测试集数据iris_test.data。
有关该数据集的详细描述详见http://archive.ics.uci.edu/ml/datasets/Iris
在执行脚本main.py中设置PoolType字符串来控制采用的是多进程还是多线程。
注意:使用多进程时,程序必须以“if __name__ == '__main__':”作为入口,这个是multiprocessing的多进程模块的硬性要求。
"""class MyProblem(ea.Problem): # 继承Problem父类def __init__(self, PoolType): # PoolType是取值为'Process'或'Thread'的字符串name = 'MyProblem' # 初始化name(函数名称,可以随意设置)M = 1 # 初始化M(目标维数)maxormins = [-1] # 初始化maxormins(目标最小最大化标记列表,1:最小化该目标;-1:最大化该目标)Dim = 2 # 初始化Dim(决策变量维数)varTypes = [0, 0] # 初始化varTypes(决策变量的类型,元素为0表示对应的变量是连续的;1表示是离散的)lb = [2**(-8)] * Dim # 决策变量下界ub = [2**8] * Dim # 决策变量上界lbin = [1] * Dim # 决策变量下边界(0表示不包含该变量的下边界,1表示包含)ubin = [1] * Dim # 决策变量上边界(0表示不包含该变量的上边界,1表示包含)# 调用父类构造方法完成实例化ea.Problem.__init__(self, name, M, maxormins, Dim, varTypes, lb, ub, lbin, ubin)# 目标函数计算中用到的一些数据fp = open('iris_train.data')datas = []data_targets = []for line in fp.readlines():line_data = line.strip('\n').split(',')data = []for i in line_data[0:4]:data.append(float(i))datas.append(data)data_targets.append(line_data[4])fp.close()self.data = preprocessing.scale(np.array(datas)) # 训练集的特征数据(归一化)self.dataTarget = np.array(data_targets)# 设置用多线程还是多进程self.PoolType = PoolTypeif self.PoolType == 'Thread':self.pool = ThreadPool(2) # 设置池的大小elif self.PoolType == 'Process':num_cores = int(mp.cpu_count()) # 获得计算机的核心数self.pool = ProcessPool(num_cores) # 设置池的大小def aimFunc(self, pop): # 目标函数,采用多线程加速计算Vars = pop.Phen # 得到决策变量矩阵args = list(zip(list(range(pop.sizes)), [Vars] * pop.sizes, [self.data] * pop.sizes, [self.dataTarget] * pop.sizes))if self.PoolType == 'Thread':pop.ObjV = np.array(list(self.pool.map(subAimFunc, args)))elif self.PoolType == 'Process':result = self.pool.map_async(subAimFunc, args)result.wait()pop.ObjV = np.array(result.get())def test(self, C, G): # 代入优化后的C、Gamma对测试集进行检验# 读取测试集数据fp = open('iris_test.data')datas = []data_targets = []for line in fp.readlines():line_data = line.strip('\n').split(',')data = []for i in line_data[0:4]:data.append(float(i))datas.append(data)data_targets.append(line_data[4])fp.close()data_test = preprocessing.scale(np.array(datas)) # 测试集的特征数据(归一化)dataTarget_test = np.array(data_targets) # 测试集的标签数据svc = svm.SVC(C=C, kernel='rbf', gamma=G).fit(self.data, self.dataTarget) # 创建分类器对象并用训练集的数据拟合分类器模型dataTarget_predict = svc.predict(data_test) # 采用训练好的分类器对象对测试集数据进行预测print("测试集数据分类正确率 = %s%%"%(len(np.where(dataTarget_predict == dataTarget_test)[0]) / len(dataTarget_test) * 100))def subAimFunc(args):i = args[0]Vars = args[1]data = args[2]dataTarget = args[3]C = Vars[i, 0]G = Vars[i, 1]svc = svm.SVC(C=C, kernel='rbf', gamma=G).fit(data, dataTarget) # 创建分类器对象并用训练集的数据拟合分类器模型scores = cross_val_score(svc, data, dataTarget, cv=30) # 计算交叉验证的得分ObjV_i = [scores.mean()] # 把交叉验证的平均得分作为目标函数值return ObjV_i

源代码

这篇关于利用进化算法+多进程/多线程来优化SVM中的两个参数:C和Gamma的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/515014

相关文章

C#使用HttpClient进行Post请求出现超时问题的解决及优化

《C#使用HttpClient进行Post请求出现超时问题的解决及优化》最近我的控制台程序发现有时候总是出现请求超时等问题,通常好几分钟最多只有3-4个请求,在使用apipost发现并发10个5分钟也... 目录优化结论单例HttpClient连接池耗尽和并发并发异步最终优化后优化结论我直接上优化结论吧,

Java内存泄漏问题的排查、优化与最佳实践

《Java内存泄漏问题的排查、优化与最佳实践》在Java开发中,内存泄漏是一个常见且令人头疼的问题,内存泄漏指的是程序在运行过程中,已经不再使用的对象没有被及时释放,从而导致内存占用不断增加,最终... 目录引言1. 什么是内存泄漏?常见的内存泄漏情况2. 如何排查 Java 中的内存泄漏?2.1 使用 J

MySQL中时区参数time_zone解读

《MySQL中时区参数time_zone解读》MySQL时区参数time_zone用于控制系统函数和字段的DEFAULTCURRENT_TIMESTAMP属性,修改时区可能会影响timestamp类型... 目录前言1.时区参数影响2.如何设置3.字段类型选择总结前言mysql 时区参数 time_zon

Python如何使用seleniumwire接管Chrome查看控制台中参数

《Python如何使用seleniumwire接管Chrome查看控制台中参数》文章介绍了如何使用Python的seleniumwire库来接管Chrome浏览器,并通过控制台查看接口参数,本文给大家... 1、cmd打开控制台,启动谷歌并制定端口号,找不到文件的加环境变量chrome.exe --rem

Python中的随机森林算法与实战

《Python中的随机森林算法与实战》本文详细介绍了随机森林算法,包括其原理、实现步骤、分类和回归案例,并讨论了其优点和缺点,通过面向对象编程实现了一个简单的随机森林模型,并应用于鸢尾花分类和波士顿房... 目录1、随机森林算法概述2、随机森林的原理3、实现步骤4、分类案例:使用随机森林预测鸢尾花品种4.1

MySQL不使用子查询的原因及优化案例

《MySQL不使用子查询的原因及优化案例》对于mysql,不推荐使用子查询,效率太差,执行子查询时,MYSQL需要创建临时表,查询完毕后再删除这些临时表,所以,子查询的速度会受到一定的影响,本文给大家... 目录不推荐使用子查询和JOIN的原因解决方案优化案例案例1:查询所有有库存的商品信息案例2:使用EX

python多进程实现数据共享的示例代码

《python多进程实现数据共享的示例代码》本文介绍了Python中多进程实现数据共享的方法,包括使用multiprocessing模块和manager模块这两种方法,具有一定的参考价值,感兴趣的可以... 目录背景进程、进程创建进程间通信 进程间共享数据共享list实践背景 安卓ui自动化框架,使用的是

MySQL中my.ini文件的基础配置和优化配置方式

《MySQL中my.ini文件的基础配置和优化配置方式》文章讨论了数据库异步同步的优化思路,包括三个主要方面:幂等性、时序和延迟,作者还分享了MySQL配置文件的优化经验,并鼓励读者提供支持... 目录mysql my.ini文件的配置和优化配置优化思路MySQL配置文件优化总结MySQL my.ini文件

Linux中Curl参数详解实践应用

《Linux中Curl参数详解实践应用》在现代网络开发和运维工作中,curl命令是一个不可或缺的工具,它是一个利用URL语法在命令行下工作的文件传输工具,支持多种协议,如HTTP、HTTPS、FTP等... 目录引言一、基础请求参数1. -X 或 --request2. -d 或 --data3. -H 或

锐捷和腾达哪个好? 两个品牌路由器对比分析

《锐捷和腾达哪个好?两个品牌路由器对比分析》在选择路由器时,Tenda和锐捷都是备受关注的品牌,各自有独特的产品特点和市场定位,选择哪个品牌的路由器更合适,实际上取决于你的具体需求和使用场景,我们从... 在选购路由器时,锐捷和腾达都是市场上备受关注的品牌,但它们的定位和特点却有所不同。锐捷更偏向企业级和专