理想同步下正交幅度调制信号理论误码率统计

2023-12-19 14:20

本文主要是介绍理想同步下正交幅度调制信号理论误码率统计,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

理想同步下QAM信号理论误码率统计

最近学习载波和符号同步,陆续做了些实验,针对每次实验的问题做做总结。
(一)仿真理想同步下QAM信号的传输,并统计误码率

clear;
% 产生随机信号,16QAM调制,过根升余弦得到发送信号,上变频,过接收滤波器,下变频,解调得到星座图
%% 参数设置
Symbol_Len = 100 * 10^3;                % 生成符号数
RB = 10 * 10^3;                         % 符号速率
f = 400 * 10^3;                         % 采样速率
fc = 100 * 10^3;                        % 载波频率
nsamp = f / RB;                         % 每符号采样点数
len_point = nsamp * Symbol_Len;         % 总采样点
%% 调制
Ms = 16;
Symbol_Ori = randi([0 Ms-1], 1, Symbol_Len);                    % 原始生成符号
Signal = qammod(Symbol_Ori, Ms);                        % 调制
% scatterplot(Signal)
% 产生根升余弦滤波器
alpha = 0.5;                                                    % 滚降系数 
span = 20;                                                      % 滤波器占符号个数, span*nsamp 为滤波器总长度
h = rcosdesign(alpha, span, nsamp, 'sqrt');                     % 产生根升余弦滤波器
% 正交调制
Signal_upsample_I = upsample(real(Signal), nsamp);              % 正交调制,分IQ两路,上采样目的是为了与采样频率统一
SendSignal_I = conv(Signal_upsample_I, h);                       Signal_upsample_Q = upsample(imag(Signal), nsamp);
SendSignal_Q = conv(Signal_upsample_Q, h);% 观察基带信号
% pwelch(SendSignal_I + SendSignal_Q)                         % 大致信号带宽 5k
B = 5 * 10^3;%% 上变频
SendSignal_I_Up = SendSignal_I .* cos(2 * pi * fc * (0:length(SendSignal_I)-1) / f);
SendSignal_Q_Up = SendSignal_Q .* (-sin(2 * pi * fc * (0:length(SendSignal_Q)-1) / f));
SendSignal_Up = SendSignal_I_Up + SendSignal_Q_Up;
% pwelch(SendSignal_Up)%% 过awgn信道并接收
% SNR = (Eb/n0) * (Rb/B)
%     = Eb/n0 + 10*log10(log2(Ms)) - 10*log10(nsamp);       % 根据数字通信系统中 Eb/N0 与 SNR 转换方法的研究
EbN0 = 0:2:16;
% EbN0 = 30:2:40;
% 理论误比特率和误码率
% [ber, ser] = berawgn(EbN0, 'psk', Ms, 'nondiff');
[ber, ser] = berawgn(EbN0, 'qam', Ms);phase_est = zeros(1, length(EbN0));
for i = 1:length(EbN0)
% SNR = EbN0(i) + 10 * log10(RB * log2(Ms)) - 10 * log10(f/2);
SNR = EbN0(i) + 10 * log10(log2(Ms)) - 10 * log10(nsamp*0.5);
SendSignal_PassAwgn = awgn(SendSignal_Up, SNR, 'measured');     % 接收过带通滤波器
Hbandpassfilter = BandPassFilter;                               % 导入带通滤波器
Hbandpass = Hbandpassfilter.Numerator;ReceiveSignal = conv(SendSignal_PassAwgn, Hbandpass, 'same');   % 接收信号过带通滤波
% pwelch(ReceiveSignal)
% 下变频
ReceiveSignal_I_Down = 2 * ReceiveSignal .* cos(2 * pi * fc * (0:length(SendSignal_I)-1) / f);
ReceiveSignal_Q_Down = 2 * ReceiveSignal .* (-sin(2 * pi * fc * (0:length(SendSignal_Q)-1) / f));% 匹配滤波
Baseband_I = conv(ReceiveSignal_I_Down, h);
Baseband_Q = conv(ReceiveSignal_Q_Down, h);BasebandSignal = complex(Baseband_I, Baseband_Q);symb_soft = BasebandSignal(1 + span * nsamp: nsamp :end - span * nsamp);            % 定时补偿后抽样
Symbol_ = qamdemod(symb_soft, Ms);                                                  % 判决[RBerr(i), RBrat(i)] = symerr(Symbol_Ori,Symbol_);
[Biterr(i), Bitrat(i)] = biterr(Symbol_Ori,Symbol_);
endber_num = round(ber * Symbol_Len * log2(Ms));                   % 理论错误点数
ser_num = round(ser * Symbol_Len);                              % 理论错误符号数
%% 画统计误码率跟实际误码率
% figure
% % 理论误码率
% semilogy(EbN0, ser,'-*');hold on;
% % 实际误码率
% semilogy(EbN0, RBrat, '-o');
% legend('理论误码率','实际误码率')
% % xticklabels({'0','2','4','6','8','10','12','14','16'})
% xlabel('EbN0(dB)');
% ylabel('误码率SER');
% title('16QAM')
% % semilogy(RBrat - ser);figure
semilogy(EbN0, ber,'-*');hold on;
% 实际比特率
semilogy(EbN0, Bitrat, '-o');
legend('理论误比特率','实际误比特率')
% xticklabels({'0','2','4','6','8','10','12','14','16'})
xlabel('EbN0(dB)');
ylabel('误比特率BER');
title('16QAM')

带通滤波器(使用MATLAB自带Filter Designer设计)

function Hd = BandPassFilter
%BANDPASSFILTER 返回离散时间滤波器对象。% MATLAB Code
% Generated by MATLAB(R) 9.9 and DSP System Toolbox 9.11.
% Generated on: 25-Oct-2022 20:33:05% Equiripple Bandpass filter designed using the FIRPM function.% All frequency values are in kHz.
Fs = 400;  % Sampling FrequencyFstop1 = 90;                % First Stopband Frequency
Fpass1 = 95;                % First Passband Frequency
Fpass2 = 105;               % Second Passband Frequency
Fstop2 = 110;               % Second Stopband Frequency
Dstop1 = 0.1;               % First Stopband Attenuation
Dpass  = 0.00057564620966;  % Passband Ripple
Dstop2 = 0.1;               % Second Stopband Attenuation
dens   = 23;                % Density Factor% Calculate the order from the parameters using FIRPMORD.
[N, Fo, Ao, W] = firpmord([Fstop1 Fpass1 Fpass2 Fstop2]/(Fs/2), [0 1 ...0], [Dstop1 Dpass Dstop2]);% Calculate the coefficients using the FIRPM function.
b  = firpm(N, Fo, Ao, W, {dens});
Hd = dfilt.dffir(b);% [EOF]

实验结果

在这里插入图片描述

总结

  1. 关于 Eb/N0 的转换关系,主要参考论文 张少侃,吕聪敏,甘浩.数字通信系统中Eb/N0与SNR转换方法的研究[J].现代计算机,2019(12):33-36.
  2. 关于matlab自带卷积函数conv。实验因为这个conv出了不少问题,误码率一直没有贴近理论。如果使用 conv(xx,xx,‘same’),需要注意滤波器是否是奇数点,像本文图省事,滤波器都设计成奇数点,用’same’才对的;如果滤波器是偶数点,则应该conv之后手动对齐。
  3. 加噪与带通滤波。加噪应该可以通过awgn函数过高斯信道或者用rand产生噪声加到信号上。带通滤波图方便用的matlab自带的app,Filter Designer,图方便就容易出事:
    一是没有留意把滤波器设计成奇对称,导致信号发生相偏;
    二是点数应该设计成奇数点,方便卷积对齐;
    三是通带增益Apass不知道为啥matlab不让设0,之前设为1就有问题,会导致信号功率放大,影响QAM解调性能,应该尽可能设小(本文设为0.01).
    此外,还可以用低通滤波代替带通滤波。
  4. 关于根升余弦滤波器。如果在发送和接收使用 conv(xx,xx,‘same’),则会导致接收信号开头和结尾的能量减少,正确应该是卷积根升余弦滤波器后两侧不截断,下采样时注意对奇。

这篇关于理想同步下正交幅度调制信号理论误码率统计的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/512519

相关文章

基于MySQL Binlog的Elasticsearch数据同步实践

一、为什么要做 随着马蜂窝的逐渐发展,我们的业务数据越来越多,单纯使用 MySQL 已经不能满足我们的数据查询需求,例如对于商品、订单等数据的多维度检索。 使用 Elasticsearch 存储业务数据可以很好的解决我们业务中的搜索需求。而数据进行异构存储后,随之而来的就是数据同步的问题。 二、现有方法及问题 对于数据同步,我们目前的解决方案是建立数据中间表。把需要检索的业务数据,统一放到一张M

服务器集群同步时间手记

1.时间服务器配置(必须root用户) (1)检查ntp是否安装 [root@node1 桌面]# rpm -qa|grep ntpntp-4.2.6p5-10.el6.centos.x86_64fontpackages-filesystem-1.41-1.1.el6.noarchntpdate-4.2.6p5-10.el6.centos.x86_64 (2)修改ntp配置文件 [r

hdu1496(用hash思想统计数目)

作为一个刚学hash的孩子,感觉这道题目很不错,灵活的运用的数组的下标。 解题步骤:如果用常规方法解,那么时间复杂度为O(n^4),肯定会超时,然后参考了网上的解题方法,将等式分成两个部分,a*x1^2+b*x2^2和c*x3^2+d*x4^2, 各自作为数组的下标,如果两部分相加为0,则满足等式; 代码如下: #include<iostream>#include<algorithm

2024年流动式起重机司机证模拟考试题库及流动式起重机司机理论考试试题

题库来源:安全生产模拟考试一点通公众号小程序 2024年流动式起重机司机证模拟考试题库及流动式起重机司机理论考试试题是由安全生产模拟考试一点通提供,流动式起重机司机证模拟考试题库是根据流动式起重机司机最新版教材,流动式起重机司机大纲整理而成(含2024年流动式起重机司机证模拟考试题库及流动式起重机司机理论考试试题参考答案和部分工种参考解析),掌握本资料和学校方法,考试容易。流动式起重机司机考试技

系统架构师考试学习笔记第三篇——架构设计高级知识(20)通信系统架构设计理论与实践

本章知识考点:         第20课时主要学习通信系统架构设计的理论和工作中的实践。根据新版考试大纲,本课时知识点会涉及案例分析题(25分),而在历年考试中,案例题对该部分内容的考查并不多,虽在综合知识选择题目中经常考查,但分值也不高。本课时内容侧重于对知识点的记忆和理解,按照以往的出题规律,通信系统架构设计基础知识点多来源于教材内的基础网络设备、网络架构和教材外最新时事热点技术。本课时知识

flume系列之:查看flume系统日志、查看统计flume日志类型、查看flume日志

遍历指定目录下多个文件查找指定内容 服务器系统日志会记录flume相关日志 cat /var/log/messages |grep -i oom 查找系统日志中关于flume的指定日志 import osdef search_string_in_files(directory, search_string):count = 0

hdu4267区间统计

题意:给一些数,有两种操作,一种是在[a,b] 区间内,对(i - a)% k == 0 的加value,另一种操作是询问某个位置的值。 import java.io.BufferedInputStream;import java.io.BufferedReader;import java.io.IOException;import java.io.InputStream;import

hdu4417区间统计

给你一个数列{An},然后有m次查询,每次查询一段区间 [l,r] <= h 的值的个数。 import java.io.BufferedInputStream;import java.io.BufferedReader;import java.io.IOException;import java.io.InputStream;import java.io.InputStreamRead

hdu3333区间统计

题目大意:求一个区间内不重复数字的和,例如1 1 1 3,区间[1,4]的和为4。 import java.io.BufferedInputStream;import java.io.BufferedReader;import java.io.IOException;import java.io.InputStream;import java.io.InputStreamReader;

实例:如何统计当前主机的连接状态和连接数

统计当前主机的连接状态和连接数 在 Linux 中,可使用 ss 命令来查看主机的网络连接状态。以下是统计当前主机连接状态和连接主机数量的具体操作。 1. 统计当前主机的连接状态 使用 ss 命令结合 grep、cut、sort 和 uniq 命令来统计当前主机的 TCP 连接状态。 ss -nta | grep -v '^State' | cut -d " " -f 1 | sort |