《统计学习方法》第三章:k-近邻算法(K-Nearest Neighbors)

2023-12-19 14:18

本文主要是介绍《统计学习方法》第三章:k-近邻算法(K-Nearest Neighbors),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

监督学习,多分类、回归

计算输入点与数据集点距离,升序排序,选取数据集里前k个点,计算这k个点对应类别(也就是label)出现的概率,最大概率的分类就是输入点的分类。

目录

一、分类问题

二、监督学习

三、KNN算法原理和流程

1、工作原理

2、一般流程

3、距离计算

4、k值的选择

1)如果选择较小的K值

2)如果选择较大的K值

三、Python代码

1、数据导入

2、算法和关键函数

1)分类算法流程和关键函数

2)文本中解析数据

3)用matplotlib绘制散点图

4)数据归一化

5)使用k-近邻算法的手写识别系统

6)测试算法

3、分类算法

1)分类算法流程

2)kNN中分类算法

四、kNN算法改进

1、KNN面临的挑战

2、算法改进

1)距离度量

2)KD树


一、分类问题

             

二、监督学习

                        

三、KNN算法原理和流程

                

1、工作原理

  • 存在一个样本数据集合,也称作训练样本集,并且样本集中每个数据都存在标签,即我们知道样本集中每个数据与所属分类的对应关系

  • 输入没有标签的新数据后,将新数据的每个特征与样本集中数据对应的特征进行比较,然后算法提取样本集中特征最相似数据(最近邻)的分类标签

  • 一般来说,只选择样本数据集中前N个最相似的数据。分类数K一般不大于20,最后,选择k个中出现次数最多的分类,作为新数据的分类。

2、一般流程

  1. 收集数据:可以使用任何方法

  2. 准备数据:距离计算所需要的数值,最后是结构化的数据格式。

  3. 分析数据:可以使用任何方法

  4. 训练算法:(此步骤kNN)中不适用

  5. 测试算法:计算错误率

  6. 使用算法:首先需要输入样本数据和结构化的输出结果,然后运行k-近邻算法判定输入数据分别属于哪个分类,最后应用对计算出的分类执行后续的处理。

3、距离计算

                 

          

p=1对应最里面的棱形;p=2对应中间的圆;p=∞对应外面的矩形

4、k值的选择

1)如果选择较小的K

  • “学习”的近似误差(approximation error)会减小,但 “学习”的估计误差(estimation error) 会增大
  • 噪声敏感
  • K值的减小就意味着整体模型变得复杂,容易发生过拟合

2)如果选择较大的K

  • 减少学习的估计误差,但缺点是学习的近似误差会增大
  • K值的增大,就意味着整体的模型变得简单

三、Python代码

1、数据导入

from numpy import *
import operator
def createDataSet():group=array([[1.0,1.1],[1.0,1.0],[0,0],[0,0.1]])labels=['A','A','B','B']return group,lablesgroup,labels=kNN.createDataSet()

 Python 数组和numpy矩阵的关系:

>>> a=[[1,2,3,4],[5,6,7,8],[9,10,11,12]]
>>> c=zeros((3,4))
>>> c
array([[ 0.,  0.,  0.,  0.],[ 0.,  0.,  0.,  0.],[ 0.,  0.,  0.,  0.]])
>>> c[0,:]=a[0]
>>> c
array([[ 1.,  2.,  3.,  4.],[ 0.,  0.,  0.,  0.],[ 0.,  0.,  0.,  0.]])

2、算法和关键函数

1)分类算法流程和关键函数

  • Shape
group,labels=kNN.createDataSet()
group.shape
group.shape[0]# shape用法
import numpy as np
x = np.array([[1,2,5],[2,3,5],[3,4,5],[2,3,6]])
#输出数组的行和列数
print x.shape  #结果: (4, 3)
#只输出行数
print x.shape[0] #结果: 4
#只输出列数
print x.shape[1] #结果: 3
  • Tile
tile([1.0,1.2],(4,1))
# 输出
array([[ 1. ,  1.2],[ 1. ,  1.2],[ 1. ,  1.2],[ 1. ,  1.2]])
tile([1.0,1.2],(4,1))-group
#输出
array([[ 0. ,  0.1],[ 0. ,  0.2],[ 1. ,  1.2],[ 1. ,  1.1]])
a=(tile([1.0,1.2],(4,1))-group)**2
#输出
array([[ 0.  ,  0.01],[ 0.  ,  0.04],[ 1.  ,  1.44],[ 1.  ,  1.21]])
  • Argsort
b=a.sum(axis=1)
c=b**0.5
d=c.argsort()
>>> d
array([0, 1, 3, 2])
  • 字典的使用
classCount={}          #字典for i in range(k):    #列表的扩展voteIlabel = labels[sortedDistIndicies[i]]classCount[voteIlabel] = classCount.get(voteIlabel,0) + 1sortedClassCount = sorted(classCount.iteritems(), key=operator.itemgetter(1), reverse=True)return sortedClassCount[0][0]kNN.classify0([0,0.2],group,labels,3)
>>'B'

2)文本中解析数据

  • 文件读取相关函数Open()、Readlines、Zeros()

3)用matplotlib绘制散点图

import matplotlib
>>> import matplotlib.pyplot as plt>>> fig=plt.figure()
>>> ax=fig.add_subplot(111)
>>> ax.scatter(datingDataMat[:,1],datingDataMat[:,2])
<matplotlib.collections.PathCollection object at 0x01D8F590>
>>> plt.show()>>> fig=plt.figure()
>>> ax=fig.add_subplot(111)
>>>ax.scatter(datingDataMat[:,1],datingDataMat[:,2],15.0*array(datingLabels),15.0*array(datingLabels))
>>> plt.show()

4)数据归一化

def autoNorm(dataSet):minVals = dataSet.min(0)maxVals = dataSet.max(0)ranges = maxVals - minValsnormDataSet = zeros(shape(dataSet))m = dataSet.shape[0]normDataSet = dataSet - tile(minVals, (m,1))normDataSet = normDataSet/tile(ranges, (m,1))   #element wise dividereturn normDataSet, ranges, minVals>>> n,r,m=kNN.autoNorm(datingDataMat)
>>> n
array([[ 0.44832535,  0.39805139,  0.56233353],[ 0.15873259,  0.34195467,  0.98724416],[ 0.28542943,  0.06892523,  0.47449629],..., [ 0.29115949,  0.50910294,  0.51079493],[ 0.52711097,  0.43665451,  0.4290048 ],[ 0.47940793,  0.3768091 ,  0.78571804]])
>>> r
array([  9.12730000e+04,   2.09193490e+01,   1.69436100e+00])
>>> m
array([ 0.      ,  0.      ,  0.001156])

5)使用k-近邻算法的手写识别系统

# 准备数据,将图像转换为测试向量 32x32
def img2vector(filename):returnVect = zeros((1,1024))fr = open(filename)for i in range(32):lineStr = fr.readline()for j in range(32):returnVect[0,32*i+j] = int(lineStr[j])return returnVect

6)测试算法

def datingClassTest():hoRatio = 0.50      #hold out 10%datingDataMat,datingLabels = file2matrix('datingTestSet2.txt')       #load data setfrom filenormMat, ranges, minVals = autoNorm(datingDataMat)m = normMat.shape[0]numTestVecs = int(m*hoRatio)errorCount = 0.0for i in range(numTestVecs):classifierResult = classify0(normMat[i,:],normMat[numTestVecs:m,:],datingLabels[numTestVecs:m],3)print "the classifier came back with: %d, the real answer is: %d" % (classifierResult, datingLabels[i])if (classifierResult != datingLabels[i]): errorCount += 1.0print "the total error rate is: %f" % (errorCount/float(numTestVecs))print errorCount>>> testVector=kNN.img2vector('testDigits/0_13.txt')
>>> tesVector[0,0:31]

3、分类算法

1)分类算法流程

对未知类别的数据集中的每个点依次执行以下操作:

  • 计算已知类别数据集众多点与当前点之间的距离
  • 按照距离递增次序排序
  • 选取与当前点距离最小的k个点
  • 群定前k个点所在类别的出现频率

2)kNN中分类算法

def classify0(inX, dataSet, labels, k):dataSetSize = dataSet.shape[0]diffMat = tile(inX, (dataSetSize,1)) - dataSetsqDiffMat = diffMat**2sqDistances = sqDiffMat.sum(axis=1)distances = sqDistances**0.5sortedDistIndicies = distances.argsort()     classCount={}          for item in range(k):voteIlabel = labels[sortedDistIndicies[item]]classCount[voteIlabel] = classCount.get(voteIlabel,0) + 1sortedClassCount = sorted(classCount.iteritems(), key=operator.itemgetter(1), reverse=True)return sortedClassCount[0][0]

四、kNN算法改进

1、KNN面临的挑战

2、算法改进

1)距离度量

马氏距离(Mahalanobis Distance)

                  

马氏距离NUMPY示例:

import numpy
x = numpy.array([[3,4],[5,6],[2,2],[8,4]])
xT = x.T
D = numpy.cov(xT)
invD = numpy.linalg.inv(D)
tp = x[0] – x[1]
print numpy.sqrt(dot(dot(tp, invD), tp.T)) 
Ø P.C. Mahalanobis提出
Ø 基于 样本分布 的一种距离测量
Ø 考虑到各种 特性之间的联系 (例如身高和体重),可以 消除样本间的相关性
Ø 广泛用于 分类 聚类分析

 

2)KD树

  • KD树是一种对 K 维空间中的实例点进行存储以便对其进行 快速检索 的树形数据结构。
  • KD树是 二叉树 ,表示对K 维空间的一个划分( partition), 构造KD 树相当于不断地用垂直于坐标轴的超平面将 k 维空间切分,构成一系列的 k 维超矩形区域, KD 树的每个结点对应于一个 k 维超矩形区域。
构造KD树
KD树搜索

这篇关于《统计学习方法》第三章:k-近邻算法(K-Nearest Neighbors)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/512507

相关文章

Linux换行符的使用方法详解

《Linux换行符的使用方法详解》本文介绍了Linux中常用的换行符LF及其在文件中的表示,展示了如何使用sed命令替换换行符,并列举了与换行符处理相关的Linux命令,通过代码讲解的非常详细,需要的... 目录简介检测文件中的换行符使用 cat -A 查看换行符使用 od -c 检查字符换行符格式转换将

SpringBoot实现数据库读写分离的3种方法小结

《SpringBoot实现数据库读写分离的3种方法小结》为了提高系统的读写性能和可用性,读写分离是一种经典的数据库架构模式,在SpringBoot应用中,有多种方式可以实现数据库读写分离,本文将介绍三... 目录一、数据库读写分离概述二、方案一:基于AbstractRoutingDataSource实现动态

Java中的String.valueOf()和toString()方法区别小结

《Java中的String.valueOf()和toString()方法区别小结》字符串操作是开发者日常编程任务中不可或缺的一部分,转换为字符串是一种常见需求,其中最常见的就是String.value... 目录String.valueOf()方法方法定义方法实现使用示例使用场景toString()方法方法

Java中List的contains()方法的使用小结

《Java中List的contains()方法的使用小结》List的contains()方法用于检查列表中是否包含指定的元素,借助equals()方法进行判断,下面就来介绍Java中List的c... 目录详细展开1. 方法签名2. 工作原理3. 使用示例4. 注意事项总结结论:List 的 contain

macOS无效Launchpad图标轻松删除的4 种实用方法

《macOS无效Launchpad图标轻松删除的4种实用方法》mac中不在appstore上下载的应用经常在删除后它的图标还残留在launchpad中,并且长按图标也不会出现删除符号,下面解决这个问... 在 MACOS 上,Launchpad(也就是「启动台」)是一个便捷的 App 启动工具。但有时候,应

SpringBoot日志配置SLF4J和Logback的方法实现

《SpringBoot日志配置SLF4J和Logback的方法实现》日志记录是不可或缺的一部分,本文主要介绍了SpringBoot日志配置SLF4J和Logback的方法实现,文中通过示例代码介绍的非... 目录一、前言二、案例一:初识日志三、案例二:使用Lombok输出日志四、案例三:配置Logback一

Python实现无痛修改第三方库源码的方法详解

《Python实现无痛修改第三方库源码的方法详解》很多时候,我们下载的第三方库是不会有需求不满足的情况,但也有极少的情况,第三方库没有兼顾到需求,本文将介绍几个修改源码的操作,大家可以根据需求进行选择... 目录需求不符合模拟示例 1. 修改源文件2. 继承修改3. 猴子补丁4. 追踪局部变量需求不符合很

SpringBoot实现MD5加盐算法的示例代码

《SpringBoot实现MD5加盐算法的示例代码》加盐算法是一种用于增强密码安全性的技术,本文主要介绍了SpringBoot实现MD5加盐算法的示例代码,文中通过示例代码介绍的非常详细,对大家的学习... 目录一、什么是加盐算法二、如何实现加盐算法2.1 加盐算法代码实现2.2 注册页面中进行密码加盐2.

mysql出现ERROR 2003 (HY000): Can‘t connect to MySQL server on ‘localhost‘ (10061)的解决方法

《mysql出现ERROR2003(HY000):Can‘tconnecttoMySQLserveron‘localhost‘(10061)的解决方法》本文主要介绍了mysql出现... 目录前言:第一步:第二步:第三步:总结:前言:当你想通过命令窗口想打开mysql时候发现提http://www.cpp

Mysql删除几亿条数据表中的部分数据的方法实现

《Mysql删除几亿条数据表中的部分数据的方法实现》在MySQL中删除一个大表中的数据时,需要特别注意操作的性能和对系统的影响,本文主要介绍了Mysql删除几亿条数据表中的部分数据的方法实现,具有一定... 目录1、需求2、方案1. 使用 DELETE 语句分批删除2. 使用 INPLACE ALTER T