《卡尔曼滤波原理及应用-MATLAB仿真》程序-5.2UKF

2023-12-19 11:38

本文主要是介绍《卡尔曼滤波原理及应用-MATLAB仿真》程序-5.2UKF,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%  功能说明: UKF在目标跟踪中的应用
%  参数说明: 1、状态6维,x方向的位置、速度、加速度;
%                y方向的位置、速度、加速度;
%             2、观测信息为距离和角度;
%  详细原理介绍及中文注释请参考:
%  《卡尔曼滤波原理及应用-MATLAB仿真》,电子工业出版社,黄小平著。
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function ukf_for_track_6_div_system
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
n=6;
t=0.5;
Q=[1 0 0 0 0 0;0 1 0 0 0 0;0 0 0.01 0 0 0;0 0 0 0.01 0 0;0 0 0 0 0.0001 0;0 0 0 0 0 0.0001];
R = [100 0;0 0.001^2];
f=@(x)[x(1)+t*x(3)+0.5*t^2*x(5);x(2)+t*x(4)+0.5*t^2*x(6);...x(3)+t*x(5);x(4)+t*x(6);x(5);x(6)];
h=@(x)[sqrt(x(1)^2+x(2)^2);atan(x(2)/x(1))];
s=[1000;5000;10;50;2;-4];
x0=s+sqrtm(Q)*randn(n,1);
P0 =[100 0 0 0 0 0;0 100 0 0 0 0;0 0 1 0 0 0;0 0 0 1 0 0;0 0 0 0 0.1 0;0 0 0 0 0 0.1];
N=50;
Xukf = zeros(n,N);
X = zeros(n,N);
Z = zeros(2,N);
for i=1:NX(:,i)= f(s)+sqrtm(Q)*randn(6,1);s = X(:,i);
end
ux=x0;
for k=1:NZ(:,k)= h(X(:,k)) + sqrtm(R)*randn(2,1);[Xukf(:,k), P0] = ukf(f,ux,P0,h,Z(:,k),Q,R);ux=Xukf(:,k);
end
for k=1:NRMS(k)=sqrt( (X(1,k)-Xukf(1,k))^2+(X(2,k)-Xukf(2,k))^2 );
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
figure
t=1:N;
hold on;box on;
plot( X(1,t),X(2,t), 'k-')
plot(Z(1,t).*cos(Z(2,t)),Z(1,t).*sin(Z(2,t)),'-b.')
plot(Xukf(1,t),Xukf(2,t),'-r.')
legend('实际值','测量值','ukf估计值');
xlabel('x方向位置/米')
ylabel('y方向位置/米')
figure
box on;
plot(RMS,'-ko','MarkerFace','r')
xlabel('t/秒')
ylabel('偏差/米')
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [X,P]=ukf(ffun,X,P,hfun,Z,Q,R)
L=numel(X);
m=numel(Z);
alpha=1e-2;
ki=0;
beta=2;
lambda=alpha^2*(L+ki)-L;
c=L+lambda;
Wm=[lambda/c 0.5/c+zeros(1,2*L)];
Wc=Wm;
Wc(1)=Wc(1)+(1-alpha^2+beta);
c=sqrt(c);
Xsigmaset=sigmas(X,P,c); 
[X1means,X1,P1,X2]=ut(ffun,Xsigmaset,Wm,Wc,L,Q);   
[Zpre,Z1,Pzz,Z2]=ut(hfun,X1,Wm,Wc,m,R);
Pxz=X2*diag(Wc)*Z2';
K=Pxz*inv(Pzz);
X=X1means+K*(Z-Zpre);
P=P1-K*Pxz';
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [Xmeans,Xsigma_pre,P,Xdiv]=ut(fun,Xsigma,Wm,Wc,n,COV)
LL=size(Xsigma,2);
Xmeans=zeros(n,1);
Xsigma_pre=zeros(n,LL);
for k=1:LLXsigma_pre(:,k)=fun(Xsigma(:,k));Xmeans=Xmeans+Wm(k)*Xsigma_pre(:,k);
end
Xdiv=Xsigma_pre-Xmeans(:,ones(1,LL));
P=Xdiv*diag(Wc)*Xdiv'+COV;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function Xset=sigmas(X,P,c)
A = c*chol(P)';
Y = X(:,ones(1,numel(X)));
Xset = [X Y+A Y-A];
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

结果:


这篇关于《卡尔曼滤波原理及应用-MATLAB仿真》程序-5.2UKF的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/512029

相关文章

python获取指定名字的程序的文件路径的两种方法

《python获取指定名字的程序的文件路径的两种方法》本文主要介绍了python获取指定名字的程序的文件路径的两种方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要... 最近在做项目,需要用到给定一个程序名字就可以自动获取到这个程序在Windows系统下的绝对路径,以下

PHP应用中处理限流和API节流的最佳实践

《PHP应用中处理限流和API节流的最佳实践》限流和API节流对于确保Web应用程序的可靠性、安全性和可扩展性至关重要,本文将详细介绍PHP应用中处理限流和API节流的最佳实践,下面就来和小编一起学习... 目录限流的重要性在 php 中实施限流的最佳实践使用集中式存储进行状态管理(如 Redis)采用滑动

ShardingProxy读写分离之原理、配置与实践过程

《ShardingProxy读写分离之原理、配置与实践过程》ShardingProxy是ApacheShardingSphere的数据库中间件,通过三层架构实现读写分离,解决高并发场景下数据库性能瓶... 目录一、ShardingProxy技术定位与读写分离核心价值1.1 技术定位1.2 读写分离核心价值二

深度解析Python中递归下降解析器的原理与实现

《深度解析Python中递归下降解析器的原理与实现》在编译器设计、配置文件处理和数据转换领域,递归下降解析器是最常用且最直观的解析技术,本文将详细介绍递归下降解析器的原理与实现,感兴趣的小伙伴可以跟随... 目录引言:解析器的核心价值一、递归下降解析器基础1.1 核心概念解析1.2 基本架构二、简单算术表达

深入浅出Spring中的@Autowired自动注入的工作原理及实践应用

《深入浅出Spring中的@Autowired自动注入的工作原理及实践应用》在Spring框架的学习旅程中,@Autowired无疑是一个高频出现却又让初学者头疼的注解,它看似简单,却蕴含着Sprin... 目录深入浅出Spring中的@Autowired:自动注入的奥秘什么是依赖注入?@Autowired

从原理到实战解析Java Stream 的并行流性能优化

《从原理到实战解析JavaStream的并行流性能优化》本文给大家介绍JavaStream的并行流性能优化:从原理到实战的全攻略,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的... 目录一、并行流的核心原理与适用场景二、性能优化的核心策略1. 合理设置并行度:打破默认阈值2. 避免装箱

PostgreSQL简介及实战应用

《PostgreSQL简介及实战应用》PostgreSQL是一种功能强大的开源关系型数据库管理系统,以其稳定性、高性能、扩展性和复杂查询能力在众多项目中得到广泛应用,本文将从基础概念讲起,逐步深入到高... 目录前言1. PostgreSQL基础1.1 PostgreSQL简介1.2 基础语法1.3 数据库

Python中的filter() 函数的工作原理及应用技巧

《Python中的filter()函数的工作原理及应用技巧》Python的filter()函数用于筛选序列元素,返回迭代器,适合函数式编程,相比列表推导式,内存更优,尤其适用于大数据集,结合lamb... 目录前言一、基本概念基本语法二、使用方式1. 使用 lambda 函数2. 使用普通函数3. 使用 N

Python中yield的用法和实际应用示例

《Python中yield的用法和实际应用示例》在Python中,yield关键字主要用于生成器函数(generatorfunctions)中,其目的是使函数能够像迭代器一样工作,即可以被遍历,但不会... 目录python中yield的用法详解一、引言二、yield的基本用法1、yield与生成器2、yi

Python多线程应用中的卡死问题优化方案指南

《Python多线程应用中的卡死问题优化方案指南》在利用Python语言开发某查询软件时,遇到了点击搜索按钮后软件卡死的问题,本文将简单分析一下出现的原因以及对应的优化方案,希望对大家有所帮助... 目录问题描述优化方案1. 网络请求优化2. 多线程架构优化3. 全局异常处理4. 配置管理优化优化效果1.