AIGC实战——条件生成对抗网络(Conditional Generative Adversarial Net, CGAN)

本文主要是介绍AIGC实战——条件生成对抗网络(Conditional Generative Adversarial Net, CGAN),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

AIGC实战——条件生成对抗网络

    • 0. 前言
    • 1. CGAN架构
    • 2. 模型训练
    • 3. CGAN 分析
    • 小结
    • 系列链接

0. 前言

我们已经学习了如何构建生成对抗网络 (Generative Adversarial Net, GAN) 以从给定的训练集中生成逼真图像。但是,我们无法控制想要生成的图像类型,例如控制模型生成男性或女性的面部图像;我们可以从潜空间中随机采样一个点,但是不能预知给定潜变量能够生成什么样的图像。在本节中,我们将构建一个能够控制输出的 GAN,即条件生成对抗网络 (Conditional Generative Adversarial Net, GAN)。该模型最早由 MirzaOsindero2014 年提出,是对 GAN 架构的简单改进。

1. CGAN架构

在节中,我们将使用面部数据集中的头发颜色属性来设置 CGAN 的条件。也就是说,我们将能够明确指定是否要生成带有金发的图像。头发颜色标签作为 CelebA 数据集的一部分已在数据集中提供,CGAN 的架构如下图所示。

CGAN 架构

标准 GANCGAN 之间的关键区别在于:在 CGAN 中,我们需要向生成器和判别器传递与标签相关的额外信息。在生成器中,标签信息转化为独热编码 (one-hot) 向量后附加在潜空间样本之后。在判别器中,通过重复独热编码向量填充得到与输入图像相同形状的通道,将标签信息添加为 RGB 图像的额外通道。
CGAN 之所以能够生成指定类型的图像,是因为其判别器可以获得关于图像内容的额外信息,因此生成器必须确保其输出与提供的标签一致,以继续欺骗判别器。如果生成器生成了与图像标签不一致的图像,即使图像非常逼真,判别器会将它们判定为伪造图像,因为图像和标签并不匹配。
在本节所构建的 CGAN 中,因为有两个类别(金发和非金发),独热编码标签的长度是 2。但是,我们也可以根据需要拥有使用多个标签。例如,在 Fashion-MNIST 数据集上训练 CGAN 时,为了输出 10 种不同类型的 Fashion-MNIST 图像,可以通过将长度为 10 的独热编码标签向量并入生成器的输入,并将 10 个额外的独热编码标签通道并入判别器的输入。
综上,我们需要对标准 GAN 架构所进行的修改是,将标签信息与生成器和判别器的现有输入连接起来:

# 图像通道和标签通道分别传递给判别器,并进行连接
critic_input = layers.Input(shape=(IMAGE_SIZE, IMAGE_SIZE, CHANNELS))
label_input = layers.Input(shape=(IMAGE_SIZE, IMAGE_SIZE, CLASSES))
x = layers.Concatenate(axis=-1)([critic_input, label_input])
x = layers.Conv2D(64, kernel_size=4, strides=2, padding="same")(x)
x = layers.LeakyReLU(0.2)(x)
x = layers.Conv2D(128, kernel_size=4, strides=2, padding="same")(x)
x = layers.LeakyReLU()(x)
x = layers.Dropout(0.3)(x)
x = layers.Conv2D(128, kernel_size=4, strides=2, padding="same")(x)
x = layers.LeakyReLU(0.2)(x)
x = layers.Dropout(0.3)(x)
x = layers.Conv2D(128, kernel_size=4, strides=2, padding="same")(x)
x = layers.LeakyReLU(0.2)(x)
x = layers.Dropout(0.3)(x)
x = layers.Conv2D(1, kernel_size=4, strides=1, padding="valid")(x)
critic_output = layers.Flatten()(x)critic = models.Model([critic_input, label_input], critic_output)
print(critic.summary())
# 潜向量和标签类别分别传递给生成器,并在调整形状之前进行连接
generator_input = layers.Input(shape=(Z_DIM,))
label_input = layers.Input(shape=(CLASSES,))
x = layers.Concatenate(axis=-1)([generator_input, label_input])
x = layers.Reshape((1, 1, Z_DIM + CLASSES))(x)
x = layers.Conv2DTranspose(128, kernel_size=4, strides=1, padding="valid", use_bias=False
)(x)
x = layers.BatchNormalization(momentum=0.9)(x)
x = layers.LeakyReLU(0.2)(x)
x = layers.Conv2DTranspose(128, kernel_size=4, strides=2, padding="same", use_bias=False
)(x)
x = layers.BatchNormalization(momentum=0.9)(x)
x = layers.LeakyReLU(0.2)(x)
x = layers.Conv2DTranspose(128, kernel_size=4, strides=2, padding="same", use_bias=False
)(x)
x = layers.BatchNormalization(momentum=0.9)(x)
x = layers.LeakyReLU(0.2)(x)
x = layers.Conv2DTranspose(64, kernel_size=4, strides=2, padding="same", use_bias=False
)(x)
x = layers.BatchNormalization(momentum=0.9)(x)
x = layers.LeakyReLU(0.2)(x)
generator_output = layers.Conv2DTranspose(CHANNELS, kernel_size=4, strides=2, padding="same", activation="tanh"
)(x)
generator = models.Model([generator_input, label_input], generator_output)
print(generator.summary())

2. 模型训练

调整 CGANtrain_step 方法,以令生成器和判别器适应新的输入格式:

    def train_step(self, data):# 从数据集中提取图像和标签real_images, one_hot_labels = data# 将独热编码向量扩展为具有与输入图像相同空间尺寸 (64×64) 的独热编码图像image_one_hot_labels = one_hot_labels[:, None, None, :]image_one_hot_labels = tf.repeat(image_one_hot_labels, repeats=IMAGE_SIZE, axis=1)image_one_hot_labels = tf.repeat(image_one_hot_labels, repeats=IMAGE_SIZE, axis=2)batch_size = tf.shape(real_images)[0]for i in range(self.critic_steps):random_latent_vectors = tf.random.normal( shape=(batch_size, self.latent_dim))with tf.GradientTape() as tape:# 生成器接受包含两个输入的列表——随机潜向量和独热编码的标签向量fake_images = self.generator([random_latent_vectors, one_hot_labels], training=True)# 判别器接受包含两个输入的列表——真实/生成图像和独热编码的标签通道fake_predictions = self.critic([fake_images, image_one_hot_labels], training=True)real_predictions = self.critic([real_images, image_one_hot_labels], training=True)c_wass_loss = tf.reduce_mean(fake_predictions) - tf.reduce_mean(real_predictions)c_gp = self.gradient_penalty(batch_size, real_images, fake_images, image_one_hot_labels)# 梯度惩罚函数还需要通过独热编码的标签通道传递(由于其流经判别器)c_loss = c_wass_loss + c_gp * self.gp_weightc_gradient = tape.gradient(c_loss, self.critic.trainable_variables)self.c_optimizer.apply_gradients(zip(c_gradient, self.critic.trainable_variables))random_latent_vectors = tf.random.normal(shape=(batch_size, self.latent_dim))with tf.GradientTape() as tape:# 生成器训练过程的修改与判别器训练步骤的修改相同fake_images = self.generator([random_latent_vectors, one_hot_labels], training=True)fake_predictions = self.critic([fake_images, image_one_hot_labels], training=True)g_loss = -tf.reduce_mean(fake_predictions)gen_gradient = tape.gradient(g_loss, self.generator.trainable_variables)self.g_optimizer.apply_gradients(zip(gen_gradient, self.generator.trainable_variables))self.c_loss_metric.update_state(c_loss)self.c_wass_loss_metric.update_state(c_wass_loss)self.c_gp_metric.update_state(c_gp)self.g_loss_metric.update_state(g_loss)return {m.name: m.result() for m in self.metrics}

3. CGAN 分析

我们可以通过将特定的独热编码标签传递到生成器的输入中来控制 CGAN 的输出。例如,要生成一张非金发的人脸图像,我们传入向量 [1, 0];要生成一张金发的人脸图像,我们传入向量 [0, 1]
CGAN 的输出如下图所示。可以看到,在保持随机潜向量不变的情况下,只改变条件标签向量,显然 CGAN 已经学会使用标签向量来控制图像的头发颜色属性,且图像的其余部分几乎没有改变。这证明了 GAN 能够以这种方式组织潜空间中的点,使得各个特征可以相互解耦。

生成结果

如果数据集中有标签可用,即使不一定需要将生成的输出与标签相关联,将它们作为 GAN 的输入通常也可以提高生成图像的质量,我们可以把标签看作是像素输入的信息扩展。

小结

在本节中,构建了一个条件生成对抗网络 (Conditional Generative Adversarial Net, CGAN),通过将标签作为输入传递给判别器和生成器,能够生成可控类别的图像,这是由于标签为网络提供了额外的信息,以便使生成的输出与给定的标签相关联。

系列链接

AIGC实战——生成模型简介
AIGC实战——深度学习 (Deep Learning, DL)
AIGC实战——卷积神经网络(Convolutional Neural Network, CNN)
AIGC实战——自编码器(Autoencoder)
AIGC实战——变分自编码器(Variational Autoencoder, VAE)
AIGC实战——使用变分自编码器生成面部图像
AIGC实战——生成对抗网络(Generative Adversarial Network, GAN)
AIGC实战——WGAN(Wasserstein GAN)

这篇关于AIGC实战——条件生成对抗网络(Conditional Generative Adversarial Net, CGAN)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/508435

相关文章

Java编译生成多个.class文件的原理和作用

《Java编译生成多个.class文件的原理和作用》作为一名经验丰富的开发者,在Java项目中执行编译后,可能会发现一个.java源文件有时会产生多个.class文件,从技术实现层面详细剖析这一现象... 目录一、内部类机制与.class文件生成成员内部类(常规内部类)局部内部类(方法内部类)匿名内部类二、

使用Jackson进行JSON生成与解析的新手指南

《使用Jackson进行JSON生成与解析的新手指南》这篇文章主要为大家详细介绍了如何使用Jackson进行JSON生成与解析处理,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1. 核心依赖2. 基础用法2.1 对象转 jsON(序列化)2.2 JSON 转对象(反序列化)3.

Linux系统配置NAT网络模式的详细步骤(附图文)

《Linux系统配置NAT网络模式的详细步骤(附图文)》本文详细指导如何在VMware环境下配置NAT网络模式,包括设置主机和虚拟机的IP地址、网关,以及针对Linux和Windows系统的具体步骤,... 目录一、配置NAT网络模式二、设置虚拟机交换机网关2.1 打开虚拟机2.2 管理员授权2.3 设置子

揭秘Python Socket网络编程的7种硬核用法

《揭秘PythonSocket网络编程的7种硬核用法》Socket不仅能做聊天室,还能干一大堆硬核操作,这篇文章就带大家看看Python网络编程的7种超实用玩法,感兴趣的小伙伴可以跟随小编一起... 目录1.端口扫描器:探测开放端口2.简易 HTTP 服务器:10 秒搭个网页3.局域网游戏:多人联机对战4.

Spring Boot + MyBatis Plus 高效开发实战从入门到进阶优化(推荐)

《SpringBoot+MyBatisPlus高效开发实战从入门到进阶优化(推荐)》本文将详细介绍SpringBoot+MyBatisPlus的完整开发流程,并深入剖析分页查询、批量操作、动... 目录Spring Boot + MyBATis Plus 高效开发实战:从入门到进阶优化1. MyBatis

MyBatis 动态 SQL 优化之标签的实战与技巧(常见用法)

《MyBatis动态SQL优化之标签的实战与技巧(常见用法)》本文通过详细的示例和实际应用场景,介绍了如何有效利用这些标签来优化MyBatis配置,提升开发效率,确保SQL的高效执行和安全性,感... 目录动态SQL详解一、动态SQL的核心概念1.1 什么是动态SQL?1.2 动态SQL的优点1.3 动态S

Pandas使用SQLite3实战

《Pandas使用SQLite3实战》本文主要介绍了Pandas使用SQLite3实战,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学... 目录1 环境准备2 从 SQLite3VlfrWQzgt 读取数据到 DataFrame基础用法:读

SpringIntegration消息路由之Router的条件路由与过滤功能

《SpringIntegration消息路由之Router的条件路由与过滤功能》本文详细介绍了Router的基础概念、条件路由实现、基于消息头的路由、动态路由与路由表、消息过滤与选择性路由以及错误处理... 目录引言一、Router基础概念二、条件路由实现三、基于消息头的路由四、动态路由与路由表五、消息过滤

java中使用POI生成Excel并导出过程

《java中使用POI生成Excel并导出过程》:本文主要介绍java中使用POI生成Excel并导出过程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录需求说明及实现方式需求完成通用代码版本1版本2结果展示type参数为atype参数为b总结注:本文章中代码均为

在java中如何将inputStream对象转换为File对象(不生成本地文件)

《在java中如何将inputStream对象转换为File对象(不生成本地文件)》:本文主要介绍在java中如何将inputStream对象转换为File对象(不生成本地文件),具有很好的参考价... 目录需求说明问题解决总结需求说明在后端中通过POI生成Excel文件流,将输出流(outputStre