vins-fusion代码解读[二] 惯性视觉里程结果与GPS松耦合

2023-12-18 04:58

本文主要是介绍vins-fusion代码解读[二] 惯性视觉里程结果与GPS松耦合,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

转载自:https://blog.csdn.net/huanghaihui_123/article/details/87183055?utm_medium=distribute.pc_relevant.none-task-blog-2%7Edefault%7EBlogCommendFromMachineLearnPai2%7Edefault-12.control&dist_request_id=1328769.29632.16174541431940121&depth_1-utm_source=distribute.pc_relevant.none-task-blog-2%7Edefault%7EBlogCommendFromMachineLearnPai2%7Edefault-12.control

vins-fusion代码解读[] 惯性视觉里程结果与GPS松耦合

乌龟抓水母 2019-02-14 14:34:43 4579 收藏 23

分类专栏: SLAM

版权

感谢“slam萌新”,本篇博客部分参考:
https://blog.csdn.net/weixin_41843971/article/details/86748719
欢迎讨论。

惯性视觉里程结果与GPS松耦合:

github开源的是KITTI的数据集的测试代码。跟着程序走一遍。

KITTIGPSTest.cpp

主程序入口:
vins_estimator包下面的KITTIGPSTest.cpp,主要作用:
(1)开启estimator类,进行vio里程估计
(2)从文件中读取视频图片列表,读入estimator类中
(3)从文件中读取GPS数据列表,直接通过ROS发布出去

具体的,从文件中获取图像和GPS数据当前的时间戳信息。以第一帧图像和第一个GPS时间早的作为基准时间,之后,左右双目的图像通过estimator.inputImage()读入里程计中,里程计Estimator类内部会定时发送VIO计算的结果。同时main函数中会在图片读入里程计的时刻发布同一时刻的GPS信息。(每一帧图片都有对应一条GPS信息,时间戳设置为一致的)

GPS融合主要发生在global_fusion包中。

global_fusion

程序同步开启了global_fusion节点。

rosrun global_fusion global_fusion_node

程序入口globalOptNode.cpp
程序定义了一个GlobalOptimization类globalEstimator来进行融合处理。
程序有三个回调函数:
(1)publish_car_model():根据最终vio与GPS融合的定位结果,发布在特定位置的一个炫酷的小车模型。
(2)GPS_callback():通过globalEstimator.inputGPS(),放入全局融合器中。
(3)vio_callback():通过globalEstimator.inputOdom(),放入全局融合器中。并且从全局融合器globalEstimator中取出最终位姿融合的结果,调用publish_car_model()发布出来。

最重要类的核心为 GlobalOptimization类 和类内的optimize()函数。

GlobalOptimization类

类成员:
(1)map类型
localPoseMap中保存着vio的位姿
GPSPositionMap中保存着gps数据
globalPoseMap中保存着优化后的全局位姿

以上类成员中map的格式:

map<double,vector<double>> =<t,vector<x,y,z,qw,qx,qy,qz>>

(2)bool类型
initGPS:第一个GPS信号触发
newGPS:有新的GPS信号后触发

(3)GeographicLib::LocalCartesian 类型
geoconverter GPS经纬度信号转化为X,Y,Z用到的第三方库
当该类已进行初始化,就同步开启了新线程optimize(),对两个结果不断进行优化。

optimize()

(1)当有新的GPS信号到来时候,进行GPS与视觉惯性的融合
(2)建立ceres的problem

  • lossfunction 设置为Huberloss
  • addParameterBlock添加优化的变量 ,优化的变量是q_array以及t_array。即globalPoseMap保存下来的每帧图像的位姿信息。其中参数变量的多少是由localPoseMap来决定的。即VIO有多少个数据,全局也就有多少个。迭代器指向的first为时间,second为7变量的位姿。其中在添加q_array由于维度只有三维,因此增加了local_parameterization来进行约束。
  • 接着开始添加残差项,总共有两个残差项分别是:vio factor以及gps factor
    – vio factor:残差项的costfunction创建由 relativeRTError来提供。观测值由vio的结果提供。此时计算的是以i时刻作为参考,从i到j这两个时刻的位移值以及四元数的旋转值作为观测值传递进入代价函数中。 此时iPj代表了i到j的位移,iQj代表了i到j的四元数变换。添加残差项的时候,需要添加当前i时刻的位姿以及j时刻的位姿。即用观测值来估计i时刻的位姿以及j时刻的位姿。
    – gps factor:残差项的costfunction创建由 TError来提供。观测值由Gps数据的结果提供。添加残差项的时候,只需要添加当前i时刻的位姿。
  • 求解非线性优化方程
  • 求解出来后,把t_array和q_array(即两个优化的变量)赋值给globalposeMap。并且根据最新解算出来的结果(即i=length-1时刻最新的结果),跟新GPS到vio这两个独立体系之间坐标转换关系。

TError及RelativeRTError

直观上理解:
{0, 1,2,3,4, 5,6…}
要估计出这些时刻,每个时刻的位姿。
我有的是两个方面的观测值,一方面是GPS得到的每个时刻的位置(x,y,z)(并且GPS信号可以提供在该时刻得到这个位置的精度posAccuracy),没有累计误差,精度较低。另一方面是VIO得到的每个时刻的位置(x,y,z)以及对应的姿态四元数(w,x,y,z),存在累计误差,短时间内精度较高。为了得到更好的一个融合结果,因此我们采用这个策略:观测值中,初始位置由GPS提供,并且vio观测值信任的是i到j时刻的位移以及姿态变化量。 并不信任vio得到的一个绝对位移量以及绝对的旋转姿态量。只信任短期的i到j的变化量,用这个变化量作为整个代价函数的观测值,进行求解。
因此两个残差项TError及RelativeRTError分别对应的就是GPS位置信号以及vio短时间内估计的i到j时刻的位姿变化量对最终结果的影响。迭代求解的过程中均采用了AutoDiffCostFunction自动求解微分来进行迭代。
(1)TError
TError(x,y,z,accuracy),最后一项是定位精度,可以由GPS系统提供。残差除了直接观测值与真值相减以外,还除了这个accuracy作为分母。意味着精度越高,accuracy越小,对结果的影响就越大。
(2)RelativeRTError
RelativeRTError(dx,dy,dz,dqw,dqx,dqy,dqz,t_var,q_var),最后两项是位移以及旋转之间的权重分配比例,并且为了使得与TError对应。在程序中,应该是根据经验把最后两项设置成一个常值,分别对应0.1以及0.01。残差的得到就根据实际值与观测值之间的偏差直接得出。

这篇关于vins-fusion代码解读[二] 惯性视觉里程结果与GPS松耦合的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/507119

相关文章

Java调用DeepSeek API的最佳实践及详细代码示例

《Java调用DeepSeekAPI的最佳实践及详细代码示例》:本文主要介绍如何使用Java调用DeepSeekAPI,包括获取API密钥、添加HTTP客户端依赖、创建HTTP请求、处理响应、... 目录1. 获取API密钥2. 添加HTTP客户端依赖3. 创建HTTP请求4. 处理响应5. 错误处理6.

使用 sql-research-assistant进行 SQL 数据库研究的实战指南(代码实现演示)

《使用sql-research-assistant进行SQL数据库研究的实战指南(代码实现演示)》本文介绍了sql-research-assistant工具,该工具基于LangChain框架,集... 目录技术背景介绍核心原理解析代码实现演示安装和配置项目集成LangSmith 配置(可选)启动服务应用场景

Python中顺序结构和循环结构示例代码

《Python中顺序结构和循环结构示例代码》:本文主要介绍Python中的条件语句和循环语句,条件语句用于根据条件执行不同的代码块,循环语句用于重复执行一段代码,文章还详细说明了range函数的使... 目录一、条件语句(1)条件语句的定义(2)条件语句的语法(a)单分支 if(b)双分支 if-else(

MySQL数据库函数之JSON_EXTRACT示例代码

《MySQL数据库函数之JSON_EXTRACT示例代码》:本文主要介绍MySQL数据库函数之JSON_EXTRACT的相关资料,JSON_EXTRACT()函数用于从JSON文档中提取值,支持对... 目录前言基本语法路径表达式示例示例 1: 提取简单值示例 2: 提取嵌套值示例 3: 提取数组中的值注意

CSS3中使用flex和grid实现等高元素布局的示例代码

《CSS3中使用flex和grid实现等高元素布局的示例代码》:本文主要介绍了使用CSS3中的Flexbox和Grid布局实现等高元素布局的方法,通过简单的两列实现、每行放置3列以及全部代码的展示,展示了这两种布局方式的实现细节和效果,详细内容请阅读本文,希望能对你有所帮助... 过往的实现方法是使用浮动加

JAVA调用Deepseek的api完成基本对话简单代码示例

《JAVA调用Deepseek的api完成基本对话简单代码示例》:本文主要介绍JAVA调用Deepseek的api完成基本对话的相关资料,文中详细讲解了如何获取DeepSeekAPI密钥、添加H... 获取API密钥首先,从DeepSeek平台获取API密钥,用于身份验证。添加HTTP客户端依赖使用Jav

Java实现状态模式的示例代码

《Java实现状态模式的示例代码》状态模式是一种行为型设计模式,允许对象根据其内部状态改变行为,本文主要介绍了Java实现状态模式的示例代码,文中通过示例代码介绍的非常详细,需要的朋友们下面随着小编来... 目录一、简介1、定义2、状态模式的结构二、Java实现案例1、电灯开关状态案例2、番茄工作法状态案例

nginx-rtmp-module模块实现视频点播的示例代码

《nginx-rtmp-module模块实现视频点播的示例代码》本文主要介绍了nginx-rtmp-module模块实现视频点播,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习... 目录预置条件Nginx点播基本配置点播远程文件指定多个播放位置参考预置条件配置点播服务器 192.

MySQL中的MVCC底层原理解读

《MySQL中的MVCC底层原理解读》本文详细介绍了MySQL中的多版本并发控制(MVCC)机制,包括版本链、ReadView以及在不同事务隔离级别下MVCC的工作原理,通过一个具体的示例演示了在可重... 目录简介ReadView版本链演示过程总结简介MVCC(Multi-Version Concurr

关于Gateway路由匹配规则解读

《关于Gateway路由匹配规则解读》本文详细介绍了SpringCloudGateway的路由匹配规则,包括基本概念、常用属性、实际应用以及注意事项,路由匹配规则决定了请求如何被转发到目标服务,是Ga... 目录Gateway路由匹配规则一、基本概念二、常用属性三、实际应用四、注意事项总结Gateway路由