用人话讲明白聚类算法kmeans

2023-12-17 17:08

本文主要是介绍用人话讲明白聚类算法kmeans,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 1.什么是聚类
  • 2.K-Means步骤
  • 3.K-Means的数学描述
  • 4.初始中心点怎么确定
  • 5.K值怎么确定
  • 6.小结


1.什么是聚类

先来回顾一下本系列第一篇就讲到的机器学习的种类。

监督式学习:训练集有明确答案,监督学习就是寻找问题(又称输入、特征、自变量)与答案(又称输出、目标、因变量)之间关系的学习方式。监督学习模型有两类,分类和回归。

• 分类模型:目标变量是离散的分类型变量;
• 回归模型:目标变量是连续性数值型变量。

无监督学习:只有数据,无明确答案,即训练集没有标注目标变量。常见的无监督学习算法有聚类(clustering),由计算机自己找出规律,把有相似属性的样本放在一组,每个小组也称为簇(cluster)。

最早的聚类分析是在考古分类、昆虫分类研究中发展起来的,目的是找到隐藏于数据中客观存在的“自然小类”,“自然小类”具有类内结构相似、类间结构差异显著的特点,通过刻画“自然小类”可以发现数据中的规律、揭示数据的内在结构

之前一起学了回归算法中超级典型的线性回归,分类算法中非常难懂的SVM,这两都是有监督学习中的模型,那今天就来看看无监督学习中最最基础的聚类算法——K-Means Cluster吧。


2.K-Means步骤

K-Means聚类步骤是一个循环迭代的算法,非常简单易懂:

  1. 假定我们要对N个样本观测做聚类,要求聚为K类,首先选择K个点作为初始中心点
  2. 接下来,按照距离初始中心点最小的原则,把所有观测分到各中心点所在的类中;
  3. 每类中有若干个观测,计算K个类中所有样本点的均值,作为第二次迭代的K个中心点;
  4. 然后根据这个中心重复第2、3步,直到收敛(中心点不再改变或达到指定的迭代次数),聚类过程结束。

以二维平面中的点 X i = ( x i 1 , x i 2 ) , i = 1 , . . . , n X_{i}=(x_{i1},x_{i2}),i=1,...,n Xi=(xi1,xi2),i=1,...,n为例,用图片展示K=2时的迭代过程:

  1. 现在我们要将(a)图中的n个绿色点聚为2类,先随机选择蓝叉和红叉分别作为初始中心点;
  2. 分别计算所有点到初始蓝叉和初始红叉的距离, X i = ( x i 1 , x i 2 ) X_{i}=(x_{i1},x_{i2}) Xi=(xi1,xi2)距离蓝叉更近就涂为蓝色,距离红叉更近就涂为红色,遍历所有点,直到全部都染色完成,如图(b);
  3. 现在我们不管初始蓝叉和初始红叉了,对于已染色的红色点计算其红色中心,蓝色点亦然,得到第二次迭代的中心,如图(c );
  4. 重复第2、3步,直到收敛,聚类过程结束。

怎么样,很简单吧?看完K-Means算法步骤的文字描述,我们可能会有以下疑问:

  1. 第一步中的初始中心点怎么确定?随便选吗?不同的初始点得到的最终聚类结果也不同吗?
  2. 第二步中点之间的距离用什么来定义?
  3. 第三步中的所有点的均值(新的中心点)怎么算?
  4. K怎么选择

3.K-Means的数学描述

我们先解答第2个和第3个问题,其他两个问题放到后面小节中再说。

聚类是把相似的物体聚在一起,这个相似度(或称距离)是用什么来度量的呢?这又得提到我们的老朋友——欧氏距离

给定两个样本 X = ( x 1 , x 2 , . . . , x n ) X=(x_{1},x_{2},...,x_{n}) X=(x1,x2,...,xn) Y = ( y 1 , y 2 , . . . , y n ) Y=(y_{1},y_{2},...,y_{n}) Y=(y1,y2,...,yn),其中n表示特征数 ,X和Y两个向量间的欧氏距离(Euclidean Distance)表示为:

这篇关于用人话讲明白聚类算法kmeans的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/505153

相关文章

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

康拓展开(hash算法中会用到)

康拓展开是一个全排列到一个自然数的双射(也就是某个全排列与某个自然数一一对应) 公式: X=a[n]*(n-1)!+a[n-1]*(n-2)!+...+a[i]*(i-1)!+...+a[1]*0! 其中,a[i]为整数,并且0<=a[i]<i,1<=i<=n。(a[i]在不同应用中的含义不同); 典型应用: 计算当前排列在所有由小到大全排列中的顺序,也就是说求当前排列是第

csu 1446 Problem J Modified LCS (扩展欧几里得算法的简单应用)

这是一道扩展欧几里得算法的简单应用题,这题是在湖南多校训练赛中队友ac的一道题,在比赛之后请教了队友,然后自己把它a掉 这也是自己独自做扩展欧几里得算法的题目 题意:把题意转变下就变成了:求d1*x - d2*y = f2 - f1的解,很明显用exgcd来解 下面介绍一下exgcd的一些知识点:求ax + by = c的解 一、首先求ax + by = gcd(a,b)的解 这个

综合安防管理平台LntonAIServer视频监控汇聚抖动检测算法优势

LntonAIServer视频质量诊断功能中的抖动检测是一个专门针对视频稳定性进行分析的功能。抖动通常是指视频帧之间的不必要运动,这种运动可能是由于摄像机的移动、传输中的错误或编解码问题导致的。抖动检测对于确保视频内容的平滑性和观看体验至关重要。 优势 1. 提高图像质量 - 清晰度提升:减少抖动,提高图像的清晰度和细节表现力,使得监控画面更加真实可信。 - 细节增强:在低光条件下,抖

【数据结构】——原来排序算法搞懂这些就行,轻松拿捏

前言:快速排序的实现最重要的是找基准值,下面让我们来了解如何实现找基准值 基准值的注释:在快排的过程中,每一次我们要取一个元素作为枢纽值,以这个数字来将序列划分为两部分。 在此我们采用三数取中法,也就是取左端、中间、右端三个数,然后进行排序,将中间数作为枢纽值。 快速排序实现主框架: //快速排序 void QuickSort(int* arr, int left, int rig

poj 3974 and hdu 3068 最长回文串的O(n)解法(Manacher算法)

求一段字符串中的最长回文串。 因为数据量比较大,用原来的O(n^2)会爆。 小白上的O(n^2)解法代码:TLE啦~ #include<stdio.h>#include<string.h>const int Maxn = 1000000;char s[Maxn];int main(){char e[] = {"END"};while(scanf("%s", s) != EO

秋招最新大模型算法面试,熬夜都要肝完它

💥大家在面试大模型LLM这个板块的时候,不知道面试完会不会复盘、总结,做笔记的习惯,这份大模型算法岗面试八股笔记也帮助不少人拿到过offer ✨对于面试大模型算法工程师会有一定的帮助,都附有完整答案,熬夜也要看完,祝大家一臂之力 这份《大模型算法工程师面试题》已经上传CSDN,还有完整版的大模型 AI 学习资料,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

dp算法练习题【8】

不同二叉搜索树 96. 不同的二叉搜索树 给你一个整数 n ,求恰由 n 个节点组成且节点值从 1 到 n 互不相同的 二叉搜索树 有多少种?返回满足题意的二叉搜索树的种数。 示例 1: 输入:n = 3输出:5 示例 2: 输入:n = 1输出:1 class Solution {public int numTrees(int n) {int[] dp = new int

Codeforces Round #240 (Div. 2) E分治算法探究1

Codeforces Round #240 (Div. 2) E  http://codeforces.com/contest/415/problem/E 2^n个数,每次操作将其分成2^q份,对于每一份内部的数进行翻转(逆序),每次操作完后输出操作后新序列的逆序对数。 图一:  划分子问题。 图二: 分而治之,=>  合并 。 图三: 回溯:

线性代数|机器学习-P36在图中找聚类

文章目录 1. 常见图结构2. 谱聚类 感觉后面几节课的内容跨越太大,需要补充太多的知识点,教授讲得内容跨越较大,一般一节课的内容是书本上的一章节内容,所以看视频比较吃力,需要先预习课本内容后才能够很好的理解教授讲解的知识点。 1. 常见图结构 假设我们有如下图结构: Adjacency Matrix:行和列表示的是节点的位置,A[i,j]表示的第 i 个节点和第 j 个