图像识别完整项目之Swin-Transformer,从获取关键词数据集到训练的完整过程

本文主要是介绍图像识别完整项目之Swin-Transformer,从获取关键词数据集到训练的完整过程,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

0. 前言

图像分类的大部分经典神经网络已经全部介绍完,并且已经作了测试

代码已经全部上传到资源,根据文章名或者关键词搜索即可

LeNet :pytorch 搭建 LeNet 网络对 CIFAR-10 图片分类

AlexNet : pytorch 搭建AlexNet 对花进行分类

Vgg : pytorch 搭建 VGG 网络

GoogLeNet : pytorch 搭建GoogLeNet

ResNet : ResNet 训练CIFAR10数据集,并做图片分类


关于轻量级网络

MobileNet 系列:

  • V1 :MobileNet V1 图像分类
  • V2 :MobileNet V2 图像分类
  • V3 :MobileNet V3 图像分类

ShuffleNet 系列:

  • V1 : ShuffleNet V1 对花数据集训练
  • V2 : ShuffleNet V2 迁移学习对花数据集训练

EfficientNet 系列:

  • V1 :EfficientNet 分类花数据集
  • V2 :EfficientNet V2 

Swin-Transformer :Swin-Transformer 在图像识别中的应用


本章将根据 Swin-Transformer 网络对图像分类ending,包括如何获取数据集,训练网络、预测图像等等。

本文从头实现对Marvel superhero 进行分类记录,项目下载在后面

代码尽量简单,小白均可运行,不需要定义复杂的变量

网络精度高,采用迁移学习

1. 项目目录

文件目录如下所示:

注:项目的文件夹和代码不可更改,要不然会报错,至于超参数的更改下面会介绍!!

inference 是预测的文件夹,将预测的图像放在该文件夹下,可以实现批预测

my_dataset_from_net 爬虫脚本,可以自动从网络上下载图片

run_results  网络训练之后生成的信息,包括类别json文件、loss和accuracy精度曲线、学习率衰减曲线、训练过程日志、已经训练集和测试集的混淆矩阵

weights 下面存放的是Swin-Transformer 的预训练权重

py 文件:

  • model Swin-Transformer 网络
  • predict 预测脚本
  • process_data 根据爬虫下载的图片,自动划分训练集和测试,并且提出损坏图像
  • train 训练部分
  • utils 工具函数

详细的可以参考README 文件

2. 获取数据集

当然最开始要配置好环境和requirements.txt 文件

获取数据集在 my_dataset_from_net 文件下,运行文件下的main.py 可以得到:

脚本会自动在该文件下生成download_images文件目录,然后会根据关键词生成子文件夹

批下载的话,可以新建txt文件,按照这样操作就行:

按照下面操作:

选中baidu API ,load file就是刚刚新建的txt文件

Max number per keywords 就是每个关键词下载的图像个数,Threads 最好设定小一点,否则可能会漏下载

下载过程如下:

下载完成如下:

3. 对下载的图像处理、划分训练集和测试集

代码是 process_data.py 文件,因为代码用中文可能报错,这里要将文件夹改成英文

该脚本会自动删除那些 PIL 打不开的文件

代码会自动将每个子文件夹下按照 0.2比例划分测试集 

运行 process_data.py 结果如下:

代码会在主目录下生成数据

4. 开始训练

训练代码是 train.py 文件

4.1 超参数设定

超参数如下:

关于--freeze-layers,设定为True,只会训练MLP权重。False会训练全部网络

    parser = argparse.ArgumentParser()parser.add_argument('--epochs', type=int, default=100)parser.add_argument('--batch-size', type=int, default=32)parser.add_argument('--lr', type=float, default=0.0001)parser.add_argument('--lrf', type=float, default=0.1)parser.add_argument('--freeze-layers', type=bool, default=False)     # 是否冻结权重

至于分类的个数啊、对应标签json文件等等,这里使用 datasets.ImageFolder,代码会自动生成,不需要设定!!

只需要更改上面超参数就行!!

4.2 训练过程

将train这部分代码放开,可以查看网络训练图像信息

如下:

训练过程:

代码会自动计算分类的类别个数

训练结果:

4.3 生成的训练日志

生成的结果全部保存在run_results目录下:

json 文件:

loss-accuracy-curve:

学习率衰减曲线:

训练集和测试集的混淆矩阵:

训练日志:

5. 预测脚本

预测脚本在 inference 中,predict.py 会预测该目录下所有图片

不需要任何更改!!

运行 predict.py结果如下:

结果展示:

6. 项目的一些问题和下载

完整项目下载:图像识别完整项目之Swin-Transformer,从获取关键词数据集到训练的完整过程

爬虫下载图片的时候,下载的数目往往和设定的不一致,这个只需要将数目调大就行。事实上,本项目每个类别仅有200多张图片仍能有不错的表现

爬虫下载的图片有时候会出现不能打开的错误,但是在process_data脚本处理的时候,是没有报错的。

训练过程也没有出现错误,可能是process_data脚本的问题

如果不放心,可以手动删除,

预测的时候,因为预处理train mean和train std的原因,会计算的很慢,如果将项目部署的话,可以手动设定

这篇关于图像识别完整项目之Swin-Transformer,从获取关键词数据集到训练的完整过程的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/504636

相关文章

C# WinForms存储过程操作数据库的实例讲解

《C#WinForms存储过程操作数据库的实例讲解》:本文主要介绍C#WinForms存储过程操作数据库的实例,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、存储过程基础二、C# 调用流程1. 数据库连接配置2. 执行存储过程(增删改)3. 查询数据三、事务处

JSON Web Token在登陆中的使用过程

《JSONWebToken在登陆中的使用过程》:本文主要介绍JSONWebToken在登陆中的使用过程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录JWT 介绍微服务架构中的 JWT 使用结合微服务网关的 JWT 验证1. 用户登录,生成 JWT2. 自定义过滤

Java利用JSONPath操作JSON数据的技术指南

《Java利用JSONPath操作JSON数据的技术指南》JSONPath是一种强大的工具,用于查询和操作JSON数据,类似于SQL的语法,它为处理复杂的JSON数据结构提供了简单且高效... 目录1、简述2、什么是 jsONPath?3、Java 示例3.1 基本查询3.2 过滤查询3.3 递归搜索3.4

java中使用POI生成Excel并导出过程

《java中使用POI生成Excel并导出过程》:本文主要介绍java中使用POI生成Excel并导出过程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录需求说明及实现方式需求完成通用代码版本1版本2结果展示type参数为atype参数为b总结注:本文章中代码均为

一文教你如何将maven项目转成web项目

《一文教你如何将maven项目转成web项目》在软件开发过程中,有时我们需要将一个普通的Maven项目转换为Web项目,以便能够部署到Web容器中运行,本文将详细介绍如何通过简单的步骤完成这一转换过程... 目录准备工作步骤一:修改​​pom.XML​​1.1 添加​​packaging​​标签1.2 添加

MySQL大表数据的分区与分库分表的实现

《MySQL大表数据的分区与分库分表的实现》数据库的分区和分库分表是两种常用的技术方案,本文主要介绍了MySQL大表数据的分区与分库分表的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有... 目录1. mysql大表数据的分区1.1 什么是分区?1.2 分区的类型1.3 分区的优点1.4 分

Mysql删除几亿条数据表中的部分数据的方法实现

《Mysql删除几亿条数据表中的部分数据的方法实现》在MySQL中删除一个大表中的数据时,需要特别注意操作的性能和对系统的影响,本文主要介绍了Mysql删除几亿条数据表中的部分数据的方法实现,具有一定... 目录1、需求2、方案1. 使用 DELETE 语句分批删除2. 使用 INPLACE ALTER T

tomcat多实例部署的项目实践

《tomcat多实例部署的项目实践》Tomcat多实例是指在一台设备上运行多个Tomcat服务,这些Tomcat相互独立,本文主要介绍了tomcat多实例部署的项目实践,具有一定的参考价值,感兴趣的可... 目录1.创建项目目录,测试文China编程件2js.创建实例的安装目录3.准备实例的配置文件4.编辑实例的

Python Dash框架在数据可视化仪表板中的应用与实践记录

《PythonDash框架在数据可视化仪表板中的应用与实践记录》Python的PlotlyDash库提供了一种简便且强大的方式来构建和展示互动式数据仪表板,本篇文章将深入探讨如何使用Dash设计一... 目录python Dash框架在数据可视化仪表板中的应用与实践1. 什么是Plotly Dash?1.1

Redis 中的热点键和数据倾斜示例详解

《Redis中的热点键和数据倾斜示例详解》热点键是指在Redis中被频繁访问的特定键,这些键由于其高访问频率,可能导致Redis服务器的性能问题,尤其是在高并发场景下,本文给大家介绍Redis中的热... 目录Redis 中的热点键和数据倾斜热点键(Hot Key)定义特点应对策略示例数据倾斜(Data S