图像识别完整项目之Swin-Transformer,从获取关键词数据集到训练的完整过程

本文主要是介绍图像识别完整项目之Swin-Transformer,从获取关键词数据集到训练的完整过程,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

0. 前言

图像分类的大部分经典神经网络已经全部介绍完,并且已经作了测试

代码已经全部上传到资源,根据文章名或者关键词搜索即可

LeNet :pytorch 搭建 LeNet 网络对 CIFAR-10 图片分类

AlexNet : pytorch 搭建AlexNet 对花进行分类

Vgg : pytorch 搭建 VGG 网络

GoogLeNet : pytorch 搭建GoogLeNet

ResNet : ResNet 训练CIFAR10数据集,并做图片分类


关于轻量级网络

MobileNet 系列:

  • V1 :MobileNet V1 图像分类
  • V2 :MobileNet V2 图像分类
  • V3 :MobileNet V3 图像分类

ShuffleNet 系列:

  • V1 : ShuffleNet V1 对花数据集训练
  • V2 : ShuffleNet V2 迁移学习对花数据集训练

EfficientNet 系列:

  • V1 :EfficientNet 分类花数据集
  • V2 :EfficientNet V2 

Swin-Transformer :Swin-Transformer 在图像识别中的应用


本章将根据 Swin-Transformer 网络对图像分类ending,包括如何获取数据集,训练网络、预测图像等等。

本文从头实现对Marvel superhero 进行分类记录,项目下载在后面

代码尽量简单,小白均可运行,不需要定义复杂的变量

网络精度高,采用迁移学习

1. 项目目录

文件目录如下所示:

注:项目的文件夹和代码不可更改,要不然会报错,至于超参数的更改下面会介绍!!

inference 是预测的文件夹,将预测的图像放在该文件夹下,可以实现批预测

my_dataset_from_net 爬虫脚本,可以自动从网络上下载图片

run_results  网络训练之后生成的信息,包括类别json文件、loss和accuracy精度曲线、学习率衰减曲线、训练过程日志、已经训练集和测试集的混淆矩阵

weights 下面存放的是Swin-Transformer 的预训练权重

py 文件:

  • model Swin-Transformer 网络
  • predict 预测脚本
  • process_data 根据爬虫下载的图片,自动划分训练集和测试,并且提出损坏图像
  • train 训练部分
  • utils 工具函数

详细的可以参考README 文件

2. 获取数据集

当然最开始要配置好环境和requirements.txt 文件

获取数据集在 my_dataset_from_net 文件下,运行文件下的main.py 可以得到:

脚本会自动在该文件下生成download_images文件目录,然后会根据关键词生成子文件夹

批下载的话,可以新建txt文件,按照这样操作就行:

按照下面操作:

选中baidu API ,load file就是刚刚新建的txt文件

Max number per keywords 就是每个关键词下载的图像个数,Threads 最好设定小一点,否则可能会漏下载

下载过程如下:

下载完成如下:

3. 对下载的图像处理、划分训练集和测试集

代码是 process_data.py 文件,因为代码用中文可能报错,这里要将文件夹改成英文

该脚本会自动删除那些 PIL 打不开的文件

代码会自动将每个子文件夹下按照 0.2比例划分测试集 

运行 process_data.py 结果如下:

代码会在主目录下生成数据

4. 开始训练

训练代码是 train.py 文件

4.1 超参数设定

超参数如下:

关于--freeze-layers,设定为True,只会训练MLP权重。False会训练全部网络

    parser = argparse.ArgumentParser()parser.add_argument('--epochs', type=int, default=100)parser.add_argument('--batch-size', type=int, default=32)parser.add_argument('--lr', type=float, default=0.0001)parser.add_argument('--lrf', type=float, default=0.1)parser.add_argument('--freeze-layers', type=bool, default=False)     # 是否冻结权重

至于分类的个数啊、对应标签json文件等等,这里使用 datasets.ImageFolder,代码会自动生成,不需要设定!!

只需要更改上面超参数就行!!

4.2 训练过程

将train这部分代码放开,可以查看网络训练图像信息

如下:

训练过程:

代码会自动计算分类的类别个数

训练结果:

4.3 生成的训练日志

生成的结果全部保存在run_results目录下:

json 文件:

loss-accuracy-curve:

学习率衰减曲线:

训练集和测试集的混淆矩阵:

训练日志:

5. 预测脚本

预测脚本在 inference 中,predict.py 会预测该目录下所有图片

不需要任何更改!!

运行 predict.py结果如下:

结果展示:

6. 项目的一些问题和下载

完整项目下载:图像识别完整项目之Swin-Transformer,从获取关键词数据集到训练的完整过程

爬虫下载图片的时候,下载的数目往往和设定的不一致,这个只需要将数目调大就行。事实上,本项目每个类别仅有200多张图片仍能有不错的表现

爬虫下载的图片有时候会出现不能打开的错误,但是在process_data脚本处理的时候,是没有报错的。

训练过程也没有出现错误,可能是process_data脚本的问题

如果不放心,可以手动删除,

预测的时候,因为预处理train mean和train std的原因,会计算的很慢,如果将项目部署的话,可以手动设定

这篇关于图像识别完整项目之Swin-Transformer,从获取关键词数据集到训练的完整过程的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/504636

相关文章

Linux进程CPU绑定优化与实践过程

《Linux进程CPU绑定优化与实践过程》Linux支持进程绑定至特定CPU核心,通过sched_setaffinity系统调用和taskset工具实现,优化缓存效率与上下文切换,提升多核计算性能,适... 目录1. 多核处理器及并行计算概念1.1 多核处理器架构概述1.2 并行计算的含义及重要性1.3 并

IntelliJ IDEA2025创建SpringBoot项目的实现步骤

《IntelliJIDEA2025创建SpringBoot项目的实现步骤》本文主要介绍了IntelliJIDEA2025创建SpringBoot项目的实现步骤,文中通过示例代码介绍的非常详细,对大家... 目录一、创建 Spring Boot 项目1. 新建项目2. 基础配置3. 选择依赖4. 生成项目5.

Spring boot整合dubbo+zookeeper的详细过程

《Springboot整合dubbo+zookeeper的详细过程》本文讲解SpringBoot整合Dubbo与Zookeeper实现API、Provider、Consumer模式,包含依赖配置、... 目录Spring boot整合dubbo+zookeeper1.创建父工程2.父工程引入依赖3.创建ap

Linux下进程的CPU配置与线程绑定过程

《Linux下进程的CPU配置与线程绑定过程》本文介绍Linux系统中基于进程和线程的CPU配置方法,通过taskset命令和pthread库调整亲和力,将进程/线程绑定到特定CPU核心以优化资源分配... 目录1 基于进程的CPU配置1.1 对CPU亲和力的配置1.2 绑定进程到指定CPU核上运行2 基于

创建Java keystore文件的完整指南及详细步骤

《创建Javakeystore文件的完整指南及详细步骤》本文详解Java中keystore的创建与配置,涵盖私钥管理、自签名与CA证书生成、SSL/TLS应用,强调安全存储及验证机制,确保通信加密和... 目录1. 秘密键(私钥)的理解与管理私钥的定义与重要性私钥的管理策略私钥的生成与存储2. 证书的创建与

SQL中如何添加数据(常见方法及示例)

《SQL中如何添加数据(常见方法及示例)》SQL全称为StructuredQueryLanguage,是一种用于管理关系数据库的标准编程语言,下面给大家介绍SQL中如何添加数据,感兴趣的朋友一起看看吧... 目录在mysql中,有多种方法可以添加数据。以下是一些常见的方法及其示例。1. 使用INSERT I

Python使用vllm处理多模态数据的预处理技巧

《Python使用vllm处理多模态数据的预处理技巧》本文深入探讨了在Python环境下使用vLLM处理多模态数据的预处理技巧,我们将从基础概念出发,详细讲解文本、图像、音频等多模态数据的预处理方法,... 目录1. 背景介绍1.1 目的和范围1.2 预期读者1.3 文档结构概述1.4 术语表1.4.1 核

Python使用OpenCV实现获取视频时长的小工具

《Python使用OpenCV实现获取视频时长的小工具》在处理视频数据时,获取视频的时长是一项常见且基础的需求,本文将详细介绍如何使用Python和OpenCV获取视频时长,并对每一行代码进行深入解析... 目录一、代码实现二、代码解析1. 导入 OpenCV 库2. 定义获取视频时长的函数3. 打开视频文

MySQL 删除数据详解(最新整理)

《MySQL删除数据详解(最新整理)》:本文主要介绍MySQL删除数据的相关知识,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录一、前言二、mysql 中的三种删除方式1.DELETE语句✅ 基本语法: 示例:2.TRUNCATE语句✅ 基本语

Java进程异常故障定位及排查过程

《Java进程异常故障定位及排查过程》:本文主要介绍Java进程异常故障定位及排查过程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、故障发现与初步判断1. 监控系统告警2. 日志初步分析二、核心排查工具与步骤1. 进程状态检查2. CPU 飙升问题3. 内存