【深度强化学习】策略梯度方法:REINFORCE、Actor-Critic

2023-12-17 13:04

本文主要是介绍【深度强化学习】策略梯度方法:REINFORCE、Actor-Critic,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

参考 
Reinforcement Learning, Second Edition  
An Introduction 
By Richard S. Sutton and Andrew G. Barto

非策略梯度方法的问题

之前的算法,无论是 MC,TD,SARSA,Q-learning, 还是 DQN、Double DQN、Dueling DQN,有至少两个问题:

  1. 都是处理离散状态、离散动作空间的问题,当需要处理连续状态 / 连续动作的时候,如果要使用这些算法,就只能把状态 / 动作离散化处理,这会导致实际相邻的 Q ( s , a ) Q(s,a) Q(s,a) 的值没有联系,变化不光滑,并且随着离散空间变大,max 的比较操作需要的计算量增大,这导致不能把离散化的分辨率无限地增高。
  2. 都利用对 V π V_\pi Vπ Q π Q_\pi Qπ arg max ⁡ a \argmax_a argmaxa 来得到策略 π \pi π,会导致只会选最优的动作,尽管有次优的动作,算法也不会去选,只会选最好的,在某些需要随机性的场景(如:非完全信息博弈(军事、牌类游戏))会产生大问题,因为行为比较有可预测性,很容易被针对。(即使有 ϵ \epsilon ϵ-贪心)

在非完全信息的纸牌游戏中,最优的策略一般是以特定的概率选择两种不同玩法,例如德州扑克中的虚张声势

我们想要的是右边的策略,它能够给出一个所有动作概率都介于(0,1)的分布,并从中进行随机采样一个动作,而不是只有一个动作的值是最突出的

策略梯度

策略梯度可以同时解决以上两个问题。
我们将策略参数化为 π ( a ∣ s , θ ) \pi(a|s, \theta) π(as,θ)(可以是简单的线性模型+softmax,也可以是神经网络),这个策略可以被关于 θ \theta θ求导: ∇ θ π ( a ∣ s , θ ) \nabla_\theta \pi(a|s,\theta) θπ(as,θ),简写为 ∇ π ( a ∣ s ) \nabla \pi(a|s) π(as)

策略梯度的直觉

我们实际上想找到一个更新策略 π ( a ∣ s , θ ) \pi(a|s,\theta) π(as,θ) 的方法,它在 θ \theta θ参数空间里面:

  • 如果往一个方向走,能对给定的 ( s t , a t ) (s_t,a_t) (st,at)获得正的回报 G t G_t Gt,就往这个方向走,并且回报绝对值越大走的步子越大
  • 如果往一个方向走,能对给定的 ( s t , a t ) (s_t,a_t) (st,at)获得负的回报 G t G_t Gt,就不往这个方向走,并且回报绝对值越大走的步子越大

和梯度下降类似,可以得到:
θ t + 1 ← θ t + α G t ∇ π ( a t ∣ s t ) \theta_{t+1} \leftarrow \theta_t + \alpha G_t \nabla \pi(a_t|s_t) θt+1θt+αGtπ(atst)

除以 π \pi π 变成 Ln

单纯这样更新会有问题,因为如果 π \pi π被初始化为存在一个次优动作(具有正回报),并且概率很大,而最优动作的概率很小,那么这个次优动作就很可能被不断地强化,导致无法学习到最优动作。

如果有三个动作,奖励是10,5,-7,对应的概率和箭头长度相同,那么5这个动作会被不断强化,因为它的初始采样概率很大
因此我们要除一个动作的概率,得到修正后的版本:

θ t + 1 ← θ t + α G t ∇ π ( a t ∣ s t ) π ( a t ∣ s t ) \theta_{t+1} \leftarrow \theta_t + \alpha G_t \frac{\nabla \pi(a_t|s_t)}{\pi(a_t|s_t)} θt+1θt+αGtπ(atst)π(atst)

也就是
θ t + 1 ← θ t + α G t ∇ ln ⁡ π ( a t ∣ s t ) \theta_{t+1} \leftarrow \theta_t + \alpha G_t \nabla \ln{\pi(a_t|s_t)} θt+1θt+αGtlnπ(atst)

REINFORCE

如果这个 G t G_t Gt 是由 MC 采样整个序列得到的,那么就得到了 REINFORCE 算法:
在这里插入图片描述

带基线的 REINFORCE

在这里插入图片描述
唯一的区别:TD target 从 G t G_t Gt 变成 G t − v ^ ( S t , w ) G_t - \hat v(S_t,\mathbf{w}) Gtv^(St,w),并且多一个价值网络,也进行跟更新。
好处:

  1. 减小方差
  2. 加快收敛速度

基线的直觉:
把 TD target 从全为正变成有正有负,更新的时候更有区分度。

Actor-Critic

在这里插入图片描述
再把 TD target 变化一下,从多步(MC)变成单步(TD),其他和 REINFORCE 一样。
之所以叫做 Actor-Critic 就是把基线 v ^ ( S , w ) \hat v(S,\mathbf{w}) v^(S,w) 当作评论家,它评价状态的好坏;而 π ( A ∣ S ) \pi(A|S) π(AS) 当作演员,尝试去按照评论家的喜好(体现为 TD target 用评论家来进行估计)来做动作。

总结

REINFORCE:MC,更新慢
δ = G t \delta =\red{ G_t} δ=Gt
θ t + 1 ← θ t + α δ ∇ ln ⁡ π ( A t ∣ S t ) \theta_{t+1} \leftarrow \theta_t + \alpha \delta \nabla \ln{\pi(A_t|S_t)} θt+1θt+αδlnπ(AtSt)
基线 REINFORCE:MC,更新慢,但是有基线,方差较小,收敛快,调参难度大一些
δ = G t − v ^ ( S t , w ) \delta = \red{G_t-\hat v(S_{t},\mathbf{w})} δ=Gtv^(St,w)
w t + 1 ← w t + α w δ ∇ v ^ ( S t ) \blue{\mathbf{w}_{t+1} \leftarrow \mathbf{w}_t + \alpha_{\mathbf{w}} \delta \nabla {\hat v(S_t)}} wt+1wt+αwδv^(St)
θ t + 1 ← θ t + α θ δ ∇ ln ⁡ π ( A t ∣ S t ) \theta_{t+1} \leftarrow \theta_t + \alpha_{\theta} \delta \nabla \ln{\pi(A_t|S_t)} θt+1θt+αθδlnπ(AtSt)
Actor-Critic:TD,更新快,调参难度大一些
δ = R t + γ v ^ ( S t ′ , w ) − v ^ ( S t , w ) \delta = \red{R_t+\gamma \hat v(S'_{t},\mathbf{w})-\hat v(S_{t},\mathbf{w})} δ=Rt+γv^(St,w)v^(St,w)
w t + 1 ← w t + α w δ ∇ v ^ ( S t ) \blue{\mathbf{w}_{t+1} \leftarrow \mathbf{w}_t + \alpha_{\mathbf{w}} \delta \nabla {\hat v(S_t)}} wt+1wt+αwδv^(St)
θ t + 1 ← θ t + α θ δ ∇ ln ⁡ π ( A t ∣ S t ) \theta_{t+1} \leftarrow \theta_t + \alpha_{\theta} \delta \nabla \ln{\pi(A_t|S_t)} θt+1θt+αθδlnπ(AtSt)

这篇关于【深度强化学习】策略梯度方法:REINFORCE、Actor-Critic的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/504457

相关文章

PHP轻松处理千万行数据的方法详解

《PHP轻松处理千万行数据的方法详解》说到处理大数据集,PHP通常不是第一个想到的语言,但如果你曾经需要处理数百万行数据而不让服务器崩溃或内存耗尽,你就会知道PHP用对了工具有多强大,下面小编就... 目录问题的本质php 中的数据流处理:为什么必不可少生成器:内存高效的迭代方式流量控制:避免系统过载一次性

python获取指定名字的程序的文件路径的两种方法

《python获取指定名字的程序的文件路径的两种方法》本文主要介绍了python获取指定名字的程序的文件路径的两种方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要... 最近在做项目,需要用到给定一个程序名字就可以自动获取到这个程序在Windows系统下的绝对路径,以下

JavaScript中的高级调试方法全攻略指南

《JavaScript中的高级调试方法全攻略指南》什么是高级JavaScript调试技巧,它比console.log有何优势,如何使用断点调试定位问题,通过本文,我们将深入解答这些问题,带您从理论到实... 目录观点与案例结合观点1观点2观点3观点4观点5高级调试技巧详解实战案例断点调试:定位变量错误性能分

Python中 try / except / else / finally 异常处理方法详解

《Python中try/except/else/finally异常处理方法详解》:本文主要介绍Python中try/except/else/finally异常处理方法的相关资料,涵... 目录1. 基本结构2. 各部分的作用tryexceptelsefinally3. 执行流程总结4. 常见用法(1)多个e

深度解析Python中递归下降解析器的原理与实现

《深度解析Python中递归下降解析器的原理与实现》在编译器设计、配置文件处理和数据转换领域,递归下降解析器是最常用且最直观的解析技术,本文将详细介绍递归下降解析器的原理与实现,感兴趣的小伙伴可以跟随... 目录引言:解析器的核心价值一、递归下降解析器基础1.1 核心概念解析1.2 基本架构二、简单算术表达

JavaScript中比较两个数组是否有相同元素(交集)的三种常用方法

《JavaScript中比较两个数组是否有相同元素(交集)的三种常用方法》:本文主要介绍JavaScript中比较两个数组是否有相同元素(交集)的三种常用方法,每种方法结合实例代码给大家介绍的非常... 目录引言:为什么"相等"判断如此重要?方法1:使用some()+includes()(适合小数组)方法2

深度解析Java @Serial 注解及常见错误案例

《深度解析Java@Serial注解及常见错误案例》Java14引入@Serial注解,用于编译时校验序列化成员,替代传统方式解决运行时错误,适用于Serializable类的方法/字段,需注意签... 目录Java @Serial 注解深度解析1. 注解本质2. 核心作用(1) 主要用途(2) 适用位置3

Java MCP 的鉴权深度解析

《JavaMCP的鉴权深度解析》文章介绍JavaMCP鉴权的实现方式,指出客户端可通过queryString、header或env传递鉴权信息,服务器端支持工具单独鉴权、过滤器集中鉴权及启动时鉴权... 目录一、MCP Client 侧(负责传递,比较简单)(1)常见的 mcpServers json 配置

504 Gateway Timeout网关超时的根源及完美解决方法

《504GatewayTimeout网关超时的根源及完美解决方法》在日常开发和运维过程中,504GatewayTimeout错误是常见的网络问题之一,尤其是在使用反向代理(如Nginx)或... 目录引言为什么会出现 504 错误?1. 探索 504 Gateway Timeout 错误的根源 1.1 后端

Maven中生命周期深度解析与实战指南

《Maven中生命周期深度解析与实战指南》这篇文章主要为大家详细介绍了Maven生命周期实战指南,包含核心概念、阶段详解、SpringBoot特化场景及企业级实践建议,希望对大家有一定的帮助... 目录一、Maven 生命周期哲学二、default生命周期核心阶段详解(高频使用)三、clean生命周期核心阶