超分辨率重建——SAN训练自己数据集及推理测试(详细图文教程)

本文主要是介绍超分辨率重建——SAN训练自己数据集及推理测试(详细图文教程),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

  • 一、源码包下载
  • 二、数据集准备
  • 三、预训练权重文件
  • 四、训练环境
  • 五、训练
    • 5.1 超参数修改
    • 5.2 训练模型
      • 5.2.1 命令方式训练
      • 5.2.2 Configuration配置参数方式训练
    • 5.3 模型保存
  • 六、推理测试
    • 6.1 超参数修改
    • 6.2 测试
      • 6.2.1 命令方式测试
      • 6.2.2 Configuration配置参数方式测试
    • 6.3 测试结果
    • 6.4 推理速度
  • 七、总结

一、源码包下载

源码包有官网提供的和我自己修改过代码提供的,建议学者直接下载我提供的源码包使用,可以少走很多弯路。

官网源码包下载链接:SAN官网

我提供的源码包:网盘源码包,提取码:0g99

论文地址:论文

我提供的源码包下载并解压后的样子如下:

在这里插入图片描述

二、数据集准备

在我提供的源码包中有部分训练集和测试集,位于根目录下的data_data文件夹中。DIV2K训练集官网提供的有900张图像,我提供的源码包中有100张,学者可以自己去官网下载完整版DIV2K数据集,我这里提供主要是想告诉学者训练集目录结构关系,如下:

在这里插入图片描述

三、预训练权重文件

预训练权重文件子在源码包中已经提供,存放位置如下,分别有超分2倍,3倍,4倍的预训练权重模型。

在这里插入图片描述

四、训练环境

测代码框架必须在低版本的Pytorch中才能运行,安装低版本的Pytorch如果遇到问题,参考我另外一篇博文:_update_worker_pids问题

我自己在Windows环境上训练并测试的,运行环境如下:

在这里插入图片描述

五、训练

5.1 超参数修改

该代码框架所有的路径都必须用绝对路径才能正确读取数据,不信的倔驴试试!

在这里插入图片描述

关于训练的所有超参数修改都在TrainCode文件夹下的option.py文件中,学者自行根据自己情况修改其它超参数。

5.2 训练模型

5.2.1 命令方式训练

先在终端通过下面命令进入到训练脚本路径下:

cd TrainCode

在输入下面命令进行训练:

ython main.py --model san --save save_name --scale 2 --n_resgroups 20 --n_resblocks 10 --n_feats 64 --reset --chop --save_results --patch_size 20 --cpu --batch_size 8

5.2.2 Configuration配置参数方式训练

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

上面两种填写配置参数的方式都可以训练,学者根据个人喜好选择。

配置参数填写好后就可以直接训练了,我自己是在CPU上训练的,因为Pytorch版本太低,牵连到CUDA和CuDNN版本不兼容的问题,要重新配置环境等问题,我懒得折腾了,就直接用CPU训练测试了,学者根据自己情况使用GPU或者CPU,如果要用GPU,把我提供的源码包main.py脚本中的代码注释了,如下:

在这里插入图片描述

5.3 模型保存

运行上面命令后,等待一段时间就开始训练了,如下:

在这里插入图片描述

训练过程的模型权重会自动保存到根目录下的experiment文件夹中,如下:

在这里插入图片描述

六、推理测试

6.1 超参数修改

测试脚本有一个专门对应的配置文件,名字也是option.py,参数很多,自行根据情况修改,如下:

在这里插入图片描述

下面是修改测试结果的保存路径,这部分代码是我自己添加的,官网源码包中没有保存测试结果的脚本,如下:

在这里插入图片描述

6.2 测试

6.2.1 命令方式测试

在终端输入以下命令进入到测试脚本的路径下:

cd TestCode/code

再输入以下命令后回车测试:

python main.py --model san --data_test MyImage --save save_name --scale 4 --n_resgroups 20 --n_resblocks 10 --n_feats 64 --reset --chop --save_results --test_only --testpath F:/Code/Python/SAN/SAN/Test_Images/INF --testset Set5 --pre_train F:/Code/Python/SAN/SAN/experiment/save_name/model/model_best.pt --cpu

上面命令中可以修改超分倍数:–scale参数;测试集路径:–testpath;训练好的模型权重路径:–pre_train;其它参数自行修改

6.2.2 Configuration配置参数方式测试

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

6.3 测试结果

运行过程如下:

在这里插入图片描述

测试保存的结果图像在根目录Result_Images文件夹中,如下:

在这里插入图片描述

6.4 推理速度

我只在CPU上测试了推理速度,图像大小:12090,超分4倍,推理速度:12s/fps。图像大小512512,超分2倍,推理速度:39s/fps。

七、总结

以上就是超分辨率重建——SAN网络训练自己数据集及推理测试的详细图文教程,欢迎留言讨论。

总结不易,多多支持,谢谢!

这篇关于超分辨率重建——SAN训练自己数据集及推理测试(详细图文教程)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/504176

相关文章

Nginx设置连接超时并进行测试的方法步骤

《Nginx设置连接超时并进行测试的方法步骤》在高并发场景下,如果客户端与服务器的连接长时间未响应,会占用大量的系统资源,影响其他正常请求的处理效率,为了解决这个问题,可以通过设置Nginx的连接... 目录设置连接超时目的操作步骤测试连接超时测试方法:总结:设置连接超时目的设置客户端与服务器之间的连接

Java调用DeepSeek API的最佳实践及详细代码示例

《Java调用DeepSeekAPI的最佳实践及详细代码示例》:本文主要介绍如何使用Java调用DeepSeekAPI,包括获取API密钥、添加HTTP客户端依赖、创建HTTP请求、处理响应、... 目录1. 获取API密钥2. 添加HTTP客户端依赖3. 创建HTTP请求4. 处理响应5. 错误处理6.

Spring AI集成DeepSeek的详细步骤

《SpringAI集成DeepSeek的详细步骤》DeepSeek作为一款卓越的国产AI模型,越来越多的公司考虑在自己的应用中集成,对于Java应用来说,我们可以借助SpringAI集成DeepSe... 目录DeepSeek 介绍Spring AI 是什么?1、环境准备2、构建项目2.1、pom依赖2.2

Goland debug失效详细解决步骤(合集)

《Golanddebug失效详细解决步骤(合集)》今天用Goland开发时,打断点,以debug方式运行,发现程序并没有断住,程序跳过了断点,直接运行结束,网上搜寻了大量文章,最后得以解决,特此在这... 目录Bug:Goland debug失效详细解决步骤【合集】情况一:Go或Goland架构不对情况二:

Ubuntu固定虚拟机ip地址的方法教程

《Ubuntu固定虚拟机ip地址的方法教程》本文详细介绍了如何在Ubuntu虚拟机中固定IP地址,包括检查和编辑`/etc/apt/sources.list`文件、更新网络配置文件以及使用Networ... 1、由于虚拟机网络是桥接,所以ip地址会不停地变化,接下来我们就讲述ip如何固定 2、如果apt安

Python itertools中accumulate函数用法及使用运用详细讲解

《Pythonitertools中accumulate函数用法及使用运用详细讲解》:本文主要介绍Python的itertools库中的accumulate函数,该函数可以计算累积和或通过指定函数... 目录1.1前言:1.2定义:1.3衍生用法:1.3Leetcode的实际运用:总结 1.1前言:本文将详

PyCharm 接入 DeepSeek最新完整教程

《PyCharm接入DeepSeek最新完整教程》文章介绍了DeepSeek-V3模型的性能提升以及如何在PyCharm中接入和使用DeepSeek进行代码开发,本文通过图文并茂的形式给大家介绍的... 目录DeepSeek-V3效果演示创建API Key在PyCharm中下载Continue插件配置Con

Deepseek R1模型本地化部署+API接口调用详细教程(释放AI生产力)

《DeepseekR1模型本地化部署+API接口调用详细教程(释放AI生产力)》本文介绍了本地部署DeepSeekR1模型和通过API调用将其集成到VSCode中的过程,作者详细步骤展示了如何下载和... 目录前言一、deepseek R1模型与chatGPT o1系列模型对比二、本地部署步骤1.安装oll

在不同系统间迁移Python程序的方法与教程

《在不同系统间迁移Python程序的方法与教程》本文介绍了几种将Windows上编写的Python程序迁移到Linux服务器上的方法,包括使用虚拟环境和依赖冻结、容器化技术(如Docker)、使用An... 目录使用虚拟环境和依赖冻结1. 创建虚拟环境2. 冻结依赖使用容器化技术(如 docker)1. 创

Spring Boot整合log4j2日志配置的详细教程

《SpringBoot整合log4j2日志配置的详细教程》:本文主要介绍SpringBoot项目中整合Log4j2日志框架的步骤和配置,包括常用日志框架的比较、配置参数介绍、Log4j2配置详解... 目录前言一、常用日志框架二、配置参数介绍1. 日志级别2. 输出形式3. 日志格式3.1 PatternL