超分辨率重建——SAN训练自己数据集及推理测试(详细图文教程)

本文主要是介绍超分辨率重建——SAN训练自己数据集及推理测试(详细图文教程),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

  • 一、源码包下载
  • 二、数据集准备
  • 三、预训练权重文件
  • 四、训练环境
  • 五、训练
    • 5.1 超参数修改
    • 5.2 训练模型
      • 5.2.1 命令方式训练
      • 5.2.2 Configuration配置参数方式训练
    • 5.3 模型保存
  • 六、推理测试
    • 6.1 超参数修改
    • 6.2 测试
      • 6.2.1 命令方式测试
      • 6.2.2 Configuration配置参数方式测试
    • 6.3 测试结果
    • 6.4 推理速度
  • 七、总结

一、源码包下载

源码包有官网提供的和我自己修改过代码提供的,建议学者直接下载我提供的源码包使用,可以少走很多弯路。

官网源码包下载链接:SAN官网

我提供的源码包:网盘源码包,提取码:0g99

论文地址:论文

我提供的源码包下载并解压后的样子如下:

在这里插入图片描述

二、数据集准备

在我提供的源码包中有部分训练集和测试集,位于根目录下的data_data文件夹中。DIV2K训练集官网提供的有900张图像,我提供的源码包中有100张,学者可以自己去官网下载完整版DIV2K数据集,我这里提供主要是想告诉学者训练集目录结构关系,如下:

在这里插入图片描述

三、预训练权重文件

预训练权重文件子在源码包中已经提供,存放位置如下,分别有超分2倍,3倍,4倍的预训练权重模型。

在这里插入图片描述

四、训练环境

测代码框架必须在低版本的Pytorch中才能运行,安装低版本的Pytorch如果遇到问题,参考我另外一篇博文:_update_worker_pids问题

我自己在Windows环境上训练并测试的,运行环境如下:

在这里插入图片描述

五、训练

5.1 超参数修改

该代码框架所有的路径都必须用绝对路径才能正确读取数据,不信的倔驴试试!

在这里插入图片描述

关于训练的所有超参数修改都在TrainCode文件夹下的option.py文件中,学者自行根据自己情况修改其它超参数。

5.2 训练模型

5.2.1 命令方式训练

先在终端通过下面命令进入到训练脚本路径下:

cd TrainCode

在输入下面命令进行训练:

ython main.py --model san --save save_name --scale 2 --n_resgroups 20 --n_resblocks 10 --n_feats 64 --reset --chop --save_results --patch_size 20 --cpu --batch_size 8

5.2.2 Configuration配置参数方式训练

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

上面两种填写配置参数的方式都可以训练,学者根据个人喜好选择。

配置参数填写好后就可以直接训练了,我自己是在CPU上训练的,因为Pytorch版本太低,牵连到CUDA和CuDNN版本不兼容的问题,要重新配置环境等问题,我懒得折腾了,就直接用CPU训练测试了,学者根据自己情况使用GPU或者CPU,如果要用GPU,把我提供的源码包main.py脚本中的代码注释了,如下:

在这里插入图片描述

5.3 模型保存

运行上面命令后,等待一段时间就开始训练了,如下:

在这里插入图片描述

训练过程的模型权重会自动保存到根目录下的experiment文件夹中,如下:

在这里插入图片描述

六、推理测试

6.1 超参数修改

测试脚本有一个专门对应的配置文件,名字也是option.py,参数很多,自行根据情况修改,如下:

在这里插入图片描述

下面是修改测试结果的保存路径,这部分代码是我自己添加的,官网源码包中没有保存测试结果的脚本,如下:

在这里插入图片描述

6.2 测试

6.2.1 命令方式测试

在终端输入以下命令进入到测试脚本的路径下:

cd TestCode/code

再输入以下命令后回车测试:

python main.py --model san --data_test MyImage --save save_name --scale 4 --n_resgroups 20 --n_resblocks 10 --n_feats 64 --reset --chop --save_results --test_only --testpath F:/Code/Python/SAN/SAN/Test_Images/INF --testset Set5 --pre_train F:/Code/Python/SAN/SAN/experiment/save_name/model/model_best.pt --cpu

上面命令中可以修改超分倍数:–scale参数;测试集路径:–testpath;训练好的模型权重路径:–pre_train;其它参数自行修改

6.2.2 Configuration配置参数方式测试

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

6.3 测试结果

运行过程如下:

在这里插入图片描述

测试保存的结果图像在根目录Result_Images文件夹中,如下:

在这里插入图片描述

6.4 推理速度

我只在CPU上测试了推理速度,图像大小:12090,超分4倍,推理速度:12s/fps。图像大小512512,超分2倍,推理速度:39s/fps。

七、总结

以上就是超分辨率重建——SAN网络训练自己数据集及推理测试的详细图文教程,欢迎留言讨论。

总结不易,多多支持,谢谢!

这篇关于超分辨率重建——SAN训练自己数据集及推理测试(详细图文教程)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/504176

相关文章

nginx -t、nginx -s stop 和 nginx -s reload 命令的详细解析(结合应用场景)

《nginx-t、nginx-sstop和nginx-sreload命令的详细解析(结合应用场景)》本文解析Nginx的-t、-sstop、-sreload命令,分别用于配置语法检... 以下是关于 nginx -t、nginx -s stop 和 nginx -s reload 命令的详细解析,结合实际应

Spring boot整合dubbo+zookeeper的详细过程

《Springboot整合dubbo+zookeeper的详细过程》本文讲解SpringBoot整合Dubbo与Zookeeper实现API、Provider、Consumer模式,包含依赖配置、... 目录Spring boot整合dubbo+zookeeper1.创建父工程2.父工程引入依赖3.创建ap

Spring Boot集成Druid实现数据源管理与监控的详细步骤

《SpringBoot集成Druid实现数据源管理与监控的详细步骤》本文介绍如何在SpringBoot项目中集成Druid数据库连接池,包括环境搭建、Maven依赖配置、SpringBoot配置文件... 目录1. 引言1.1 环境准备1.2 Druid介绍2. 配置Druid连接池3. 查看Druid监控

创建Java keystore文件的完整指南及详细步骤

《创建Javakeystore文件的完整指南及详细步骤》本文详解Java中keystore的创建与配置,涵盖私钥管理、自签名与CA证书生成、SSL/TLS应用,强调安全存储及验证机制,确保通信加密和... 目录1. 秘密键(私钥)的理解与管理私钥的定义与重要性私钥的管理策略私钥的生成与存储2. 证书的创建与

SQL中如何添加数据(常见方法及示例)

《SQL中如何添加数据(常见方法及示例)》SQL全称为StructuredQueryLanguage,是一种用于管理关系数据库的标准编程语言,下面给大家介绍SQL中如何添加数据,感兴趣的朋友一起看看吧... 目录在mysql中,有多种方法可以添加数据。以下是一些常见的方法及其示例。1. 使用INSERT I

使用Docker构建Python Flask程序的详细教程

《使用Docker构建PythonFlask程序的详细教程》在当今的软件开发领域,容器化技术正变得越来越流行,而Docker无疑是其中的佼佼者,本文我们就来聊聊如何使用Docker构建一个简单的Py... 目录引言一、准备工作二、创建 Flask 应用程序三、创建 dockerfile四、构建 Docker

Python使用vllm处理多模态数据的预处理技巧

《Python使用vllm处理多模态数据的预处理技巧》本文深入探讨了在Python环境下使用vLLM处理多模态数据的预处理技巧,我们将从基础概念出发,详细讲解文本、图像、音频等多模态数据的预处理方法,... 目录1. 背景介绍1.1 目的和范围1.2 预期读者1.3 文档结构概述1.4 术语表1.4.1 核

MySQL 删除数据详解(最新整理)

《MySQL删除数据详解(最新整理)》:本文主要介绍MySQL删除数据的相关知识,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录一、前言二、mysql 中的三种删除方式1.DELETE语句✅ 基本语法: 示例:2.TRUNCATE语句✅ 基本语

Python设置Cookie永不超时的详细指南

《Python设置Cookie永不超时的详细指南》Cookie是一种存储在用户浏览器中的小型数据片段,用于记录用户的登录状态、偏好设置等信息,下面小编就来和大家详细讲讲Python如何设置Cookie... 目录一、Cookie的作用与重要性二、Cookie过期的原因三、实现Cookie永不超时的方法(一)

SpringBoot整合liteflow的详细过程

《SpringBoot整合liteflow的详细过程》:本文主要介绍SpringBoot整合liteflow的详细过程,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋...  liteflow 是什么? 能做什么?总之一句话:能帮你规范写代码逻辑 ,编排并解耦业务逻辑,代码