【深度强化学习】DQN, Double DQN, Dueling DQN

2023-12-17 08:12

本文主要是介绍【深度强化学习】DQN, Double DQN, Dueling DQN,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在这里插入图片描述


DQN

更新方程

Q θ ( s t , a t ) ← Q θ ( s t , a t ) + α ( r t + γ max ⁡ a ′ Q θ ( s t + 1 , a ′ ) − Q θ ( s t , a t ) ) Q_\theta(s_t,a_t) \leftarrow Q_\theta(s_t,a_t) + \alpha \left( r_t + \gamma \red{\max_{a'} Q_\theta(s_{t+1},a')} - Q_{\theta}(s_t,a_t)\right) Qθ(st,at)Qθ(st,at)+α(rt+γmaxaQθ(st+1,a)Qθ(st,at))

缺点:

  1. 频繁更新,算法不稳定
  2. 数据并不满足 i.i.d.

解决方法

  • 经验回放
  • 双网络结构(评估网络、目标网络)

经验回放

直觉:利用记忆,降低方差,增加稳定性。
做法:训练过程中存储 ( s , a , r , s ′ ) (s,a,r,s') (s,a,r,s) 到 buffer,训练的时候均匀/非均匀采样

优先经验回放(PER)

直觉:样本的TD 误差也不同,并且样本数量也不同。
如:打游戏,一般的关卡打小怪,比较容易,TD loss 很小,训练样本也多;最后一关打boss,难度大, TD loss 大,训练样本也少。
因此我们需要调整样本的采样概率,TD loss 大的样本给更大的采样概率,并给较小的学习率。
我们存储数据到 Buffer 的时候,还额外存储一个采样概率 p t + ϵ p_t +\epsilon pt+ϵ

p t = ∣ δ t ∣ p_t = |\delta_{t}| pt=δt
δ t \delta_{t} δt代表这个样本的TD loss

选中概率
P ( t ) = p t α ∑ k p k α P(t)=\frac{p_t^\alpha}{\sum_k p_k^\alpha} P(t)=kpkαptα

重要性采样调整学习率
ω t = ( N × P ( t ) ) − β max ⁡ i ω i \omega_t = \frac{(N\times P(t))^{-\beta}}{\max_i \omega_i} ωt=maxiωi(N×P(t))β

双网络结构

直觉:避免使用自举法,自己评价自己。这样 label 背后的机制在一段时间内总是稳定的,部分解决了DQN的偏差大的问题
用慢 Q 网络计算 TD target
目标 = r t + γ max ⁡ a ′ Q θ − ( s t + 1 , a ′ ) 目标 = r_t + \gamma \red{\max_{a'} Q_{\theta-}(s_{t+1},a')} 目标=rt+γamaxQθ(st+1,a)


Double DQN

但是使用了双网络(慢Q用来计算 TD target)之后,由于仍然使用 max 操作,会有**过估计的问题,导致算法容易过于自信,**高估 q ∗ ( s , a ) q_*(s,a) q(s,a) 的值。因此使用 Double DQN,对 TD target 的 max 重写为 argmax 的形式

DQN(快慢双Q、慢Q计算TD)
y t = r r + γ Q θ − ( s t + 1 , arg ⁡ max ⁡ a ′ Q θ − ( s t + 1 , a ′ ) ) y_t = r_r + \gamma \red{Q_{\theta -}(s_{t+1},\arg \max_{a'}\blue{ Q_{\theta -}}(s_{t+1},a'))} yt=rr+γQθ(st+1,argamaxQθ(st+1,a))

Double DQN(快慢双Q、慢Q只评估TD值、快Q计算max动作)
y t = r r + γ Q θ − ( s t + 1 , arg ⁡ max ⁡ a ′ Q θ ( s t + 1 , a ′ ) ) y_t = r_r + \gamma \red{Q_{\theta -}(s_{t+1},\arg \max_{a'}\green{Q_{\theta}}(s_{t+1},a'))} yt=rr+γQθ(st+1,argamaxQθ(st+1,a))


Dueling DQN

我们继续往 Double DQN 里面引入另外的模型假设,就有可能继续提升模型的性能:

这里的假设/直觉是:
部分环境反馈 Q 可能仅与状态 s 有关,和 a 无关。换句话说: Q ( s , a 1 ) Q(s,a_1) Q(s,a1) Q ( s , a 2 ) Q(s,a_2) Q(s,a2) 之间并不是完全无关的,对于部分反馈,他们之间是正相关的。
例子:

s = 小明考试得 0 分
a1 = 小明不做任何事
a2 = 小明和妈妈说“妈妈我爱你”Q(s,a1) < 0 这是显然的
Q(s,a2) < 0 也同样有很大可能发生

在上面的例子中,如果我们独立地估计两个值,那么在估计第二个 Q 值的时候,TD loss 会比没有使用 Dueling 大(因为 Dueling 已经可以用 V ( s ) V(s) V(s)作为一个 baseline 估计),因为在这个场景下,Q 很大程度由 s 决定,如果能整体地学习 Q 关于 a 的加权函数,比如说 ∑ a π ( a ∣ s ) Q ( s , a ) \sum_a \pi(a|s) Q(s,a) aπ(as)Q(s,a) ,也就是 V ( s ) V(s) V(s),那么可以预期模型的收敛速度会加快。

在这里插入图片描述
因此,Dueling DQN 使用两个网络,Q被表示为两个网络的输出的和
Q ( s , a ) = A ( s , a ) + V ( s ) Q(s,a) = A(s,a) + V(s) Q(s,a)=A(s,a)+V(s)
这里 A A A 被称作优势函数, A A A 相对于单纯的 Q Q Q 更强调动作 a a a的好坏,而 V V V只关注状态的好坏。

不同的优势函数聚合形式

在这里插入图片描述

这篇关于【深度强化学习】DQN, Double DQN, Dueling DQN的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/503705

相关文章

SpringCloud动态配置注解@RefreshScope与@Component的深度解析

《SpringCloud动态配置注解@RefreshScope与@Component的深度解析》在现代微服务架构中,动态配置管理是一个关键需求,本文将为大家介绍SpringCloud中相关的注解@Re... 目录引言1. @RefreshScope 的作用与原理1.1 什么是 @RefreshScope1.

Python 中的异步与同步深度解析(实践记录)

《Python中的异步与同步深度解析(实践记录)》在Python编程世界里,异步和同步的概念是理解程序执行流程和性能优化的关键,这篇文章将带你深入了解它们的差异,以及阻塞和非阻塞的特性,同时通过实际... 目录python中的异步与同步:深度解析与实践异步与同步的定义异步同步阻塞与非阻塞的概念阻塞非阻塞同步

Redis中高并发读写性能的深度解析与优化

《Redis中高并发读写性能的深度解析与优化》Redis作为一款高性能的内存数据库,广泛应用于缓存、消息队列、实时统计等场景,本文将深入探讨Redis的读写并发能力,感兴趣的小伙伴可以了解下... 目录引言一、Redis 并发能力概述1.1 Redis 的读写性能1.2 影响 Redis 并发能力的因素二、

最新Spring Security实战教程之表单登录定制到处理逻辑的深度改造(最新推荐)

《最新SpringSecurity实战教程之表单登录定制到处理逻辑的深度改造(最新推荐)》本章节介绍了如何通过SpringSecurity实现从配置自定义登录页面、表单登录处理逻辑的配置,并简单模拟... 目录前言改造准备开始登录页改造自定义用户名密码登陆成功失败跳转问题自定义登出前后端分离适配方案结语前言

Java进阶学习之如何开启远程调式

《Java进阶学习之如何开启远程调式》Java开发中的远程调试是一项至关重要的技能,特别是在处理生产环境的问题或者协作开发时,:本文主要介绍Java进阶学习之如何开启远程调式的相关资料,需要的朋友... 目录概述Java远程调试的开启与底层原理开启Java远程调试底层原理JVM参数总结&nbsMbKKXJx

Redis 内存淘汰策略深度解析(最新推荐)

《Redis内存淘汰策略深度解析(最新推荐)》本文详细探讨了Redis的内存淘汰策略、实现原理、适用场景及最佳实践,介绍了八种内存淘汰策略,包括noeviction、LRU、LFU、TTL、Rand... 目录一、 内存淘汰策略概述二、内存淘汰策略详解2.1 ​noeviction(不淘汰)​2.2 ​LR

Python与DeepSeek的深度融合实战

《Python与DeepSeek的深度融合实战》Python作为最受欢迎的编程语言之一,以其简洁易读的语法、丰富的库和广泛的应用场景,成为了无数开发者的首选,而DeepSeek,作为人工智能领域的新星... 目录一、python与DeepSeek的结合优势二、模型训练1. 数据准备2. 模型架构与参数设置3

Java深度学习库DJL实现Python的NumPy方式

《Java深度学习库DJL实现Python的NumPy方式》本文介绍了DJL库的背景和基本功能,包括NDArray的创建、数学运算、数据获取和设置等,同时,还展示了如何使用NDArray进行数据预处理... 目录1 NDArray 的背景介绍1.1 架构2 JavaDJL使用2.1 安装DJL2.2 基本操

最长公共子序列问题的深度分析与Java实现方式

《最长公共子序列问题的深度分析与Java实现方式》本文详细介绍了最长公共子序列(LCS)问题,包括其概念、暴力解法、动态规划解法,并提供了Java代码实现,暴力解法虽然简单,但在大数据处理中效率较低,... 目录最长公共子序列问题概述问题理解与示例分析暴力解法思路与示例代码动态规划解法DP 表的构建与意义动

Go中sync.Once源码的深度讲解

《Go中sync.Once源码的深度讲解》sync.Once是Go语言标准库中的一个同步原语,用于确保某个操作只执行一次,本文将从源码出发为大家详细介绍一下sync.Once的具体使用,x希望对大家有... 目录概念简单示例源码解读总结概念sync.Once是Go语言标准库中的一个同步原语,用于确保某个操