计算机图形学实验二-实现圆的中点算法、椭圆的中点算法

2023-12-16 17:50

本文主要是介绍计算机图形学实验二-实现圆的中点算法、椭圆的中点算法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1、圆的中点算法说明

算法说明

(1)圆的中点算法主要思想是将绘图区域分成八个部分,利用圆的对称性,只要画出一个部分的弧线即可将整个圆形绘出,这里借用老师上课ppt中的一个图片,如下图所示,白色区域的点针对其他七个部分都有对称的点的坐标,所以利用圆的8对称性,只须讨论1/8圆:第一象限内x∈[0,R/2^(1/2)]的1/8圆弧即可。

  1. 下面对绘制白色区域的弧线的算法进行说明,构造函数:F(X,Y)=X2  +  Y2 -  R2,则F(X,Y)= 0:(X,Y)在圆周上;F(X,Y)< 0:(X,Y)在圆内;F(X,Y)> 0:(X,Y)在圆外。如果dM<0,表示下一中点M在圆内,选择T点,∆dMT= dMT - dM=2xp+3;如果dM>0,表示下一中点M在圆外,选择B点,且:∆dMB= dMB - dM=2xp-2yp +5 ,d的初值是dM0=1.25-R,为了优化算法,这里将dM0=1-R,判断其是否小于0即可。

算法实现及测试

从上图可以看出我在初始化画布之前有具体算法的选择,后面的两个后续讲解,选择绘制圆形之后,可以由用户自定义圆的半径,由于我这里给出的画布大小是400×400的,所以为了避免圆无法完整显示的情况,输出提示信息提示用户输入圆的半径的范围。

  1. 椭圆的中点算法说明

算法说明:椭圆跟圆形有相似之处也有不同之处,圆形是八对称性,而椭圆是四对称性,所以这里只考虑第一象限的弧线绘制即可。设出椭圆的隐函数方程F(x,y)之后进行判断,F(X,Y) = 0 :(X,Y) 在椭圆上;F(X,Y) < 0 :(X,Y) 在椭圆内;F(X,Y) > 0 :(X,Y) 在椭圆外,这里还有一个特别注意的点,椭圆有上下两部分,而划分依据是(b^2)*x≥(a^2)*y与否,所以针对两个不同的部分,适时调整xy坐标,即当(b^2)*x≥(a^2)*y的时候,进行x坐标和y坐标的交换,这样就可继续使用设计的算法,原来的算法不会有太大的改动。

算法的实现和测试

左图是椭圆上半部分的绘制,右图是椭圆下半部分的绘制,drawLine函数是绘制对应四个象限的弧线,针对不同的d1/d2,进行不同的x坐标和y坐标的增量。

上图即为算法测试结果,同样先由用户选择绘制椭圆算法,然后依次输入椭圆的长轴和短轴长度,同时这里为了避免绘制图形出界问题规定了长轴和短轴的范围。

  1. 鼠标的交互

前面两种算法的实现是基于用户在控制台的输入(圆的半径或者椭圆的长短轴),在实现两种算法的同时,我加入了鼠标的交互,即用户选择3(或者输入非1、2的字符),直接进入空白页面,鼠标右键点击弹出选择菜单,选择Circle是绘制圆形,选择Oval是绘制椭圆,即用户可以在进入画布之后,自由选择圆或者椭圆的绘制。

 

3.2 实验总结和收获

本次实验是利用中点画线算法实现圆和椭圆的绘制,在实现基本的绘制之后,我加入了用户自定义选择选项和由用户自定义圆的半径和椭圆的长短轴选择,此外,若用户不想输入操作,则直接进入画布,在画布中点击鼠标右键即可自由选择绘制圆形或者椭圆形。这里我分析了两者的优缺点,前者优点是用户可以自己选择绘制的圆和椭圆的大小,缺点是需要用户输入数据之后才能看到图形绘制出来的样子并且用户启动一次程序,只能选择绘制圆形或者椭圆形,过程不可逆;后者优点是用户进入画布后可以重复性自由选择绘制圆形还是椭圆形,启动一次程序即可,缺点是不能自由设定圆形或者椭圆形的大小。

详细代码见链接:https://download.csdn.net/download/weixin_53249260/88218026

这篇关于计算机图形学实验二-实现圆的中点算法、椭圆的中点算法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/501358

相关文章

Linux下删除乱码文件和目录的实现方式

《Linux下删除乱码文件和目录的实现方式》:本文主要介绍Linux下删除乱码文件和目录的实现方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录linux下删除乱码文件和目录方法1方法2总结Linux下删除乱码文件和目录方法1使用ls -i命令找到文件或目录

SpringBoot+EasyExcel实现自定义复杂样式导入导出

《SpringBoot+EasyExcel实现自定义复杂样式导入导出》这篇文章主要为大家详细介绍了SpringBoot如何结果EasyExcel实现自定义复杂样式导入导出功能,文中的示例代码讲解详细,... 目录安装处理自定义导出复杂场景1、列不固定,动态列2、动态下拉3、自定义锁定行/列,添加密码4、合并

mybatis执行insert返回id实现详解

《mybatis执行insert返回id实现详解》MyBatis插入操作默认返回受影响行数,需通过useGeneratedKeys+keyProperty或selectKey获取主键ID,确保主键为自... 目录 两种方式获取自增 ID:1. ​​useGeneratedKeys+keyProperty(推

Spring Boot集成Druid实现数据源管理与监控的详细步骤

《SpringBoot集成Druid实现数据源管理与监控的详细步骤》本文介绍如何在SpringBoot项目中集成Druid数据库连接池,包括环境搭建、Maven依赖配置、SpringBoot配置文件... 目录1. 引言1.1 环境准备1.2 Druid介绍2. 配置Druid连接池3. 查看Druid监控

Linux在线解压jar包的实现方式

《Linux在线解压jar包的实现方式》:本文主要介绍Linux在线解压jar包的实现方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录linux在线解压jar包解压 jar包的步骤总结Linux在线解压jar包在 Centos 中解压 jar 包可以使用 u

c++ 类成员变量默认初始值的实现

《c++类成员变量默认初始值的实现》本文主要介绍了c++类成员变量默认初始值,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录C++类成员变量初始化c++类的变量的初始化在C++中,如果使用类成员变量时未给定其初始值,那么它将被

Qt使用QSqlDatabase连接MySQL实现增删改查功能

《Qt使用QSqlDatabase连接MySQL实现增删改查功能》这篇文章主要为大家详细介绍了Qt如何使用QSqlDatabase连接MySQL实现增删改查功能,文中的示例代码讲解详细,感兴趣的小伙伴... 目录一、创建数据表二、连接mysql数据库三、封装成一个完整的轻量级 ORM 风格类3.1 表结构

基于Python实现一个图片拆分工具

《基于Python实现一个图片拆分工具》这篇文章主要为大家详细介绍了如何基于Python实现一个图片拆分工具,可以根据需要的行数和列数进行拆分,感兴趣的小伙伴可以跟随小编一起学习一下... 简单介绍先自己选择输入的图片,默认是输出到项目文件夹中,可以自己选择其他的文件夹,选择需要拆分的行数和列数,可以通过

Python中将嵌套列表扁平化的多种实现方法

《Python中将嵌套列表扁平化的多种实现方法》在Python编程中,我们常常会遇到需要将嵌套列表(即列表中包含列表)转换为一个一维的扁平列表的需求,本文将给大家介绍了多种实现这一目标的方法,需要的朋... 目录python中将嵌套列表扁平化的方法技术背景实现步骤1. 使用嵌套列表推导式2. 使用itert

Python使用pip工具实现包自动更新的多种方法

《Python使用pip工具实现包自动更新的多种方法》本文深入探讨了使用Python的pip工具实现包自动更新的各种方法和技术,我们将从基础概念开始,逐步介绍手动更新方法、自动化脚本编写、结合CI/C... 目录1. 背景介绍1.1 目的和范围1.2 预期读者1.3 文档结构概述1.4 术语表1.4.1 核