ControlNet Adding Conditional Control to Text-to-Image Diffusion Models

2023-12-16 15:15

本文主要是介绍ControlNet Adding Conditional Control to Text-to-Image Diffusion Models,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

ControlNet: Adding Conditional Control to Text-to-Image Diffusion Models

TL; DR:ControlNet 使得我们能通过输入额外的条件图(如 Canny 边缘、人体姿态、深度图等),对 SD 生成结果的空间位置有更准确的控制。它拷贝 SD 部分原权重作为一个新的分支进行微调训练,同时维持 SD 原权重分支不变,并在开始训练使用零卷积将二者相连。从而能利用已经在大规模图片数据上预训练的 SD 权重,尽量保持原模型能力,且训练高效。

方法

模型结构

ControlNet 对 SD 原模型的 adapt 如图所示。图中 x 是输入噪声图,y 是输出,c 是条件图输入。拷贝一份原参数权重作为另一分支,进行训练,原参数权重分支不动,两分支之间用零卷积链接。所谓零卷积,就是权重和偏置都初始化为 0 的 1x1 卷积。这样,在训练刚开始时,由于零卷积的输出都是 0,因此改动后的模型和原 SD 模型的输出是完全一致的。随着训练的进行,才会产生变化。这样的结构能保证不会对预训练的 SD 模型带来有害的噪声。

在这里插入图片描述

文章以 SD txt2img 为例,详细介绍了插入 ControlNet 的方法。原 SD 的 UNet 网络共有 12 层降采样,12 层上采样和 1 层中间层。其特征图共有 4 中空间分辨率大小(64、32、16、8)。ControlNet 对 UNet 的 encoder 部分(12 层降采样 + 1 层中间层)构建了可训练拷贝。其输出分别经过零卷积,输入给原 SD 模型的解码器部分。

在这里插入图片描述

此外,SD 是隐层扩散模型(LDM),其扩散过程时发生在 latent 空间的。输入的条件图自然也需要转换到 latent 空间,ControlNet 是使用了四层卷积层完成了这个转换,将 512x512 的真实图片转换到 64x64 的 latent 空间。

训练

ControlNet 是在预训练好的模型权重上,加入一些参数,然后进行微调。其训练的目标函数与 SD 是完全一致的,但是加入了各种条件图(如 Canny、人体姿势等)作为输入。在训练时 ControlNet 时,还会有 50% 的概率将文本 prompt 替换为空字符串,从而训练 ControlNet 直接识别条件图语义的能力。

作者在训练 ControlNet 时还观察到一个奇特的现象,即模型并不是逐渐学习到条件控制能力的,而是在某一步,突然就会了。如下图,模型在 6133 步,突然就能精准地按照输入的 Canny 边缘进行生成了。作者称这为 “突然收敛现象” (sudden convergence phenomenon)。

在这里插入图片描述

推理

训练结束之后,推理时就可以按照输入的条件图来控制空间位置,进行生成了。这里作者还交代了几点细节,用于更好地控制生成结果。

CFG-RW:SD 在训练时使用了 Classifier-Free Guidance 的方法,即同时训练模型条件生成和无条件生成的能力,然后在生成时,也同时生成条件结果和无条件结果,并根据指定的 CFG Scale 得到最终的生成结果: ϵ prd = ϵ uc + β cfg ( ϵ c − ϵ uc ) \epsilon_{\text{prd}}=\epsilon_{\text{uc}}+\beta_{\text{cfg}}(\epsilon_{\text{c}}-\epsilon_{\text{uc}}) ϵprd=ϵuc+βcfg(ϵcϵuc) 。ControlNet 中,条件生成的结果既可以加到 ϵ uc \epsilon_{\text{uc}} ϵuc ϵ c \epsilon_{\text{c}} ϵc 中,也可以只添加到 ϵ c \epsilon_{\text{c}} ϵc 中。如果 prompt 为空(有 50% 概率),此时如果同时加到 ϵ uc \epsilon_{\text{uc}} ϵuc ϵ c \epsilon_{\text{c}} ϵc 中,则相当于没有 CFG 了,而如果只加到 ϵ c \epsilon_{\text{c}} ϵc 中,那么 CFG 引导又太强。这里作者的策略是使用分辨率加权(CFG-RW),即 w i = 64 / h i w_i=64/h_i wi=64/hi 其中 h i h_i hi 是第 i 层的空间分辨率,如 h 1 = 8 , h 2 = 16 , … h_1=8,h_2=16,\dots h1=8,h2=16,

从下图的结果来看,嘉乐 CFG-RW 的策略后,生成的结果会好很多。

在这里插入图片描述

组合多种 ControlNet:我们可以对同一次生成组合使用多种 ControlNet,并不需要任何加权或插值。如下面的例子就组合了人体姿势和手部的深度图作为条件。

在这里插入图片描述

实验结果

总结

ControlNet 的影响力不言而喻,我们终于能对生成结果的空间位置有精确的控制,而不需要再一次次的碰运气。ICCV 2023 Best Paper 实至名归。

这篇关于ControlNet Adding Conditional Control to Text-to-Image Diffusion Models的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/500921

相关文章

论文翻译:arxiv-2024 Benchmark Data Contamination of Large Language Models: A Survey

Benchmark Data Contamination of Large Language Models: A Survey https://arxiv.org/abs/2406.04244 大规模语言模型的基准数据污染:一项综述 文章目录 大规模语言模型的基准数据污染:一项综述摘要1 引言 摘要 大规模语言模型(LLMs),如GPT-4、Claude-3和Gemini的快

论文翻译:ICLR-2024 PROVING TEST SET CONTAMINATION IN BLACK BOX LANGUAGE MODELS

PROVING TEST SET CONTAMINATION IN BLACK BOX LANGUAGE MODELS https://openreview.net/forum?id=KS8mIvetg2 验证测试集污染在黑盒语言模型中 文章目录 验证测试集污染在黑盒语言模型中摘要1 引言 摘要 大型语言模型是在大量互联网数据上训练的,这引发了人们的担忧和猜测,即它们可能已

lvgl8.3.6 控件垂直布局 label控件在image控件的下方显示

在使用 LVGL 8.3.6 创建一个垂直布局,其中 label 控件位于 image 控件下方,你可以使用 lv_obj_set_flex_flow 来设置布局为垂直,并确保 label 控件在 image 控件后添加。这里是如何步骤性地实现它的一个基本示例: 创建父容器:首先创建一个容器对象,该对象将作为布局的基础。设置容器为垂直布局:使用 lv_obj_set_flex_flow 设置容器

【Python报错已解决】AttributeError: ‘list‘ object has no attribute ‘text‘

🎬 鸽芷咕:个人主页  🔥 个人专栏: 《C++干货基地》《粉丝福利》 ⛺️生活的理想,就是为了理想的生活! 文章目录 前言一、问题描述1.1 报错示例1.2 报错分析1.3 解决思路 二、解决方法2.1 方法一:检查属性名2.2 步骤二:访问列表元素的属性 三、其他解决方法四、总结 前言 在Python编程中,属性错误(At

MFC中Spin Control控件使用,同时数据在Edit Control中显示

实现mfc spin control 上下滚动,只需捕捉spin control 的 UDN_DELTAPOD 消息,如下:  OnDeltaposSpin1(NMHDR *pNMHDR, LRESULT *pResult) {  LPNMUPDOWN pNMUpDown = reinterpret_cast(pNMHDR);  // TODO: 在此添加控件通知处理程序代码    if

速通GPT-3:Language Models are Few-Shot Learners全文解读

文章目录 论文实验总览1. 任务设置与测试策略2. 任务类别3. 关键实验结果4. 数据污染与实验局限性5. 总结与贡献 Abstract1. 概括2. 具体分析3. 摘要全文翻译4. 为什么不需要梯度更新或微调⭐ Introduction1. 概括2. 具体分析3. 进一步分析 Approach1. 概括2. 具体分析3. 进一步分析 Results1. 概括2. 具体分析2.1 语言模型

2024年 Biomedical Signal Processing and Control 期刊投稿经验最新分享

期刊介绍 《Biomedical Signal Processing and Control 》期刊旨在为临床医学和生物科学中信号和图像的测量和分析研究提供一个跨学科的国际论坛。重点放在处理在临床诊断,患者监测和管理中使用的方法和设备的实际,应用为主导的研究的贡献。 生物医学信号处理和控制反映了这些方法在工程和临床科学的界面上被使用和发展的主要领域。期刊的范围包括相关的评论论文(review p

使用亚马逊Bedrock的Stable Diffusion XL模型实现文本到图像生成:探索AI的无限创意

引言 什么是Amazon Bedrock? Amazon Bedrock是亚马逊云服务(AWS)推出的一项旗舰服务,旨在推动生成式人工智能(AI)在各行业的广泛应用。它的核心功能是提供由顶尖AI公司(如AI21 Labs、Anthropic、Cohere、Meta、Mistral AI、Stability AI以及亚马逊自身)开发的多种基础模型(Foundation Models,简称FMs)。

Differential Diffusion,赋予每个像素它应有的力量,以及在comfyui中的测试效果

🥽原论文要点 首先是原论文地址:https://differential-diffusion.github.io/paper.pdf 其次是git介绍地址:GitHub - exx8/differential-diffusion 感兴趣的朋友们可以自行阅读。 首先,论文开篇就给了一个例子: 我们的方法根据给定的图片和文本提示,以不同的程度改变图像的不同区域。这种可控性允许我们再现

【ReactJS】困惑于text/babel与browser.js还是babel.js?

使用JSX   使用JSX,可以极大的简化React元素的创建,JSX抽象化了React.createElement()函数的使用,其语法风格类似于HTML语法风格。对比如下代码可以让你更好的理解这一点。 // 使用React.createElement()return React.createElement('div',null,'Hello',this.props.name);//使用J