点云格式转换:将 ros PointCloud2格式数据转为livox CustomMsg格式

2023-12-16 08:28

本文主要是介绍点云格式转换:将 ros PointCloud2格式数据转为livox CustomMsg格式,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

将 ros PointCloud2格式数据转为livox CustomMsg格式

  • 前言
  • 点云格式
    • PointCloud2 点云格式
    • livox CustomMsg 点云格式
  • 将 ros PointCloud2格式数据转为livox CustomMsg格式
  • 测试

前言

览沃科技有限公司(Livox)成立于2016年。为了革新激光雷达行业,Livox致力于提供高性能、低成本的激光雷达传感器。通过降低使用门槛和生产成本,Livox将激光雷达技术集成到更多产品和应用之中,从而为自动驾驶、智慧城市、测绘、移动机器人等行业带来创新性改变。Livox产品已销往包括美国、加拿大、中国、日本和欧盟在内的 26 个国家和地区。

面向智能移动机器人市场,Livox 推出最新一代 3D 激光雷达 Mid-360,开启混合固态激光雷达 360° 立体感知新篇章。凭借小巧体积,Mid-360 的安装布置更加灵活。同时,Mid-360 充分考虑了移动机器人对导航、避障等升维感知的需求,兼容室内外场景,赋能移动机器人进入空间智能感知新时代。 但是这款产品官网一直购买不到, 本篇博客 在 gazebo 中 可实现对该激光雷达的仿真 。

传统激光雷达普遍采用机械扫描方式,扫描路径随时间重复。而Livox 激光雷达采用了独特的扫描⽅式,扫描路径不会重复。在非重复扫描方式中,视场中被激光照射到的区域面积会随时间增大,这意味着视场覆盖率随时间推移而显著提高,可减小视场内物体被漏检的概率,有助于探测视场中的更多细节。
在这里插入图片描述
下图中给出了一个直观的例子。(a)图由于采用了非重复扫描方式,随着时间的积累,视场覆盖率逐渐升高。而(b)图,由于扫描每次都是重复的,视场覆盖率几乎没有提升。

gazebo中自带的laser插件是上图中b的方式,并不能代表livox的这种雷达。

livox 的仿真功能包(livox_laser_simulation)中 提供了 多种半固体的雷达仿真模型,可以在gazebo中进行该雷达的仿真与其扫描方式(非重复式扫描)点云发布。

但是经过测试发现 livox_laser_simulation 雷达仿真功能包发布的是 ros PointCloud2 点云格式数据。

而现在针对livox雷达的激光slam算法用的是 livox CustomMsg 点云格式数据,例如 Fast-Lio2 、Faster-Lio 、Lio-livox等。所以想在gazebo中仿真这些算法,需要将 ros PointCloud2格式数据转为livox CustomMsg格式 。

点云格式

PointCloud2 点云格式

PointCloud2 是ros的一种点云格式

具体官方数据 http://docs.ros.org/en/jade/api/sensor_msgs/html/msg/PointCloud2.html

std_msgs/Header headeruint32 seqtime stampstring frame_id
uint32 height
uint32 width
sensor_msgs/PointField[] fieldsuint8 INT8=1uint8 UINT8=2uint8 INT16=3uint8 UINT16=4uint8 INT32=5uint8 UINT32=6uint8 FLOAT32=7uint8 FLOAT64=8string nameuint32 offsetuint8 datatypeuint32 count
bool is_bigendian
uint32 point_step
uint32 row_step
uint8[] data
bool is_dense

一个仿真的点云消息长这样

header:  // 点云的头信息seq: 963 //stamp:  // 时间戳secs: 1541143772nsecs: 912011000frame_id: "/camera_init"
height: 1   // If the cloud is unordered, height is 1  如果cloud 是无序的 height 是 1
width: 852578  //点云的长度
fields:  //  sensor_msgs/PointField[] fields - name: "x"offset: 0datatype: 7 	// 	uint8 INT8    = 1//	uint8 UINT8   = 2//	uint8 INT16   = 3//	uint8 UINT16  = 4//	uint8 INT32   = 5//	uint8 UINT32  = 6//	uint8 FLOAT32 = 7//	uint8 FLOAT64 = 8count: 1- name: "y"offset: 4datatype: 7count: 1- name: "z"offset: 8datatype: 7count: 1- name: "intensity"offset: 16datatype: 7count: 1
is_bigendian: False
point_step: 32 // Length of a point in bytes 一个点占的比特数 
row_step: 27282496 // Length of a row in bytes 一行的长度占用的比特数
data: [ .......................................................... ] //  Actual point data, size is (row_step*height)
is_dense: True // 没有非法数据点

livox CustomMsg 点云格式

CustomMsg 是 livox雷达的 专有的点云格式,其格式如下:

Header header             # ROS standard message header
uint64 timebase          # The time of first point
uint32 point_num      # Total number of pointclouds
uint8 lidar_id               # Lidar device id number
uint8[3] rsvd                 # Reserved use
CustomPoint[] points    # Pointcloud data

上述自定义数据包中的自定义点云(CustomPoint)格式 :

uint32 offset_time      # offset time relative to the base time
float32 x               # X axis, unit:m
float32 y               # Y axis, unit:m
float32 z               # Z axis, unit:m
uint8 reflectivity      # reflectivity, 0~255
uint8 tag               # livox tag
uint8 line              # laser number in lidar
  • line
    最后一行line是激光雷达扫描的线数(livox avia为6线),从原始扫描点云可以看出,后期可以按线来对原始点处理、筛选
  • tag
    tag: 主要指示多回波信息及噪点信息。是一个二进制表达,标记信息的格式如下:bit7 bit6 bit5 bit4 bit3 bit2 bit1 bit0

bit7 bit6 保留位

bit5 bit4 回波序号 : 00: 第 0 个回波 01: 第 1 个回波 10: 第 2 个回波 11: 第 3 个回波 由于Livox Avia 采用同轴光路,即使外部无被测物体,其内部的光学系统也会产生一个回波,该回波记为第 0个回波。随后,若激光出射方向存在可被探测的物体,则最先返回系统的激光回波记为第 1 个回波,随后为第 2个回波,以此类推。如果被探测物体距离过近(例如 1.5 m),第 1 个回波将会融合到第 0 个回波里,该回波记为第 0 个回波。

bit3 bit2 基于强度的点属性: 00:正常点 01:回波能量噪点置信度高 10:回波能量噪点置信度中 11:保留位
基于回波能量强度判断采样点是否为噪点。通常情况下,激光光束受到类似灰尘、雨雾、雪等干扰产生的噪点的回波能量很小。目前按照回波能量强度大小将噪点置信度分为二档:01表示回波能量很弱,这类采样点有较高概率为噪点,例如灰尘点;10表示回波能量中等,该类采样点有中等概率为噪点,例如雨雾噪点。噪点置信度越低,说明该点是噪点的可能性越低。

bit1 bit0 基于空间位置的点属性 : 00:正常点 01:空间噪点置信度高 10:空间噪点置信度中 11:空间噪点置信度低
基于采样点的空间位置判断是否为噪点。例如,激光探测测距仪在测量前后两个距离十分相近的物体时,两个物体之间可能会产生拉丝状的噪点。目前按照不同的噪点置信度分为三档,噪点置信度越低,说明该点是噪点的可能性越低。

  • offset_time
    时间戳
    点云数据及 IMU 数据中都包含时间戳信息。

  • reflectivity
    目标反射率
    目标反射率:以 0 至 255 表示。其中 0 至 150 对应反射率介于 0 至 100% 的漫散射物体;而 151 至255 对应全反射物体。

  • x y z
    坐标信息:Livox Avia 的坐标信息可表示为直角坐标(x, y, z)或球坐标(r, θ, φ)。如果前方无被探测物体或者被探测物体超出量程范围(例如 600 m),在直角坐标系下,点云输出为(0,0,0);在球坐标系下,点云输出为(0,θ, φ)。

将 ros PointCloud2格式数据转为livox CustomMsg格式

为了使 livox_laser_simulation 功能包可以输出 CustomMsg 格式数据用于 fast-lio仿真,需要对其代码进行修改。主要是livox_laser_simulation/src/livox_points_plugin.cpp 这个文件。

重新编写这个函数

void LivoxPointsPlugin::OnNewLaserScans()

前面的这些可以不变

    if (rayShape) {std::vector<std::pair<int, AviaRotateInfo>> points_pair;InitializeRays(points_pair, rayShape);rayShape->Update();msgs::Set(laserMsg.mutable_time(), world->SimTime());msgs::LaserScan *scan = laserMsg.mutable_scan();InitializeScan(scan);SendRosTf(parentEntity->WorldPose(), world->Name(), raySensor->ParentName());auto rayCount = RayCount();auto verticalRayCount = VerticalRayCount();auto angle_min = AngleMin().Radian();auto angle_incre = AngleResolution();auto verticle_min = VerticalAngleMin().Radian();auto verticle_incre = VerticalAngleResolution();

声明要发布的 custom格式的livox 点云

        livox_ros_driver::CustomMsg pp_livox;//声明要发布的 custom格式的livox 点云

赋值点云帧头

        // 赋值点云帧头pp_livox.header.stamp = ros::Time::now();//时间pp_livox.header.frame_id = "livox";//坐标系int count = 0;

用 high_resolution_clock 记录 起始时间

        boost::chrono::high_resolution_clock::time_point start_time = boost::chrono::high_resolution_clock::now();

遍历每个点

        for (auto &pair : points_pair){

获得点的距离

            auto range = rayShape->GetRange(pair.first);

获得点的强度

            auto intensity = rayShape->GetRetro(pair.first);

最大最小距离限制

            if (range >= RangeMax()) {range = 0;} else if (range <= RangeMin()) {range = 0;}

将极坐标转为x y z

            auto rotate_info = pair.second;// 将极坐标转为x y  z ignition::math::Quaterniond ray;ray.Euler(ignition::math::Vector3d(0.0, rotate_info.zenith, rotate_info.azimuth));auto axis = ray * ignition::math::Vector3d(1.0, 0.0, 0.0);auto point = range * axis;

声明一个 Custom 点

livox_ros_driver::CustomPoint p;//声明一个 Custom 点

赋值坐标

            p.x = point.X();p.y = point.Y();p.z = point.Z();

赋值强度

 p.reflectivity = intensity;

计算当前点时间到起始时间差

            boost::chrono::high_resolution_clock::time_point end_time = boost::chrono::high_resolution_clock::now();// 当前点时间boost::chrono::nanoseconds elapsed_time = boost::chrono::duration_cast<boost::chrono::nanoseconds>(end_time - start_time);

赋值偏移时间

p.offset_time = elapsed_time.count();

将当前点存入点云中

pp_livox.points.push_back(p);
// 计点个数的计数器加1
count ++;
}//结束遍历每个点

赋值点云中点的个数

        pp_livox.point_num = count;

发布点云

        livox_pub.publish(pp_livox);ros::spinOnce();}

测试

将功能包进行编译,需要引入 livox_ros_driver 功能包

find_package(catkin REQUIRED COMPONENTSroscpptflivox_ros_driver  # 新增
)

包含头文件

#include <livox_ros_driver/CustomMsg.h>

完成编译后启动仿真环境
在这里插入图片描述
产看当前话题名
可以看到这个 /livox/lidar 话题名

查看这个话题信息

rostopic info /livox/lidar

在这里插入图片描述

jk-jone@JKKC:~$ rostopic info /livox/lidar
Type: livox_ros_driver/CustomMsg
Publishers:
/gazebo (http://JKKC:38793/)
Subscribers: None

消息类型改成了 livox_ros_driver/CustomMsg

这篇关于点云格式转换:将 ros PointCloud2格式数据转为livox CustomMsg格式的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/499829

相关文章

Java中注解与元数据示例详解

《Java中注解与元数据示例详解》Java注解和元数据是编程中重要的概念,用于描述程序元素的属性和用途,:本文主要介绍Java中注解与元数据的相关资料,文中通过代码介绍的非常详细,需要的朋友可以参... 目录一、引言二、元数据的概念2.1 定义2.2 作用三、Java 注解的基础3.1 注解的定义3.2 内

将sqlserver数据迁移到mysql的详细步骤记录

《将sqlserver数据迁移到mysql的详细步骤记录》:本文主要介绍将SQLServer数据迁移到MySQL的步骤,包括导出数据、转换数据格式和导入数据,通过示例和工具说明,帮助大家顺利完成... 目录前言一、导出SQL Server 数据二、转换数据格式为mysql兼容格式三、导入数据到MySQL数据

C++中使用vector存储并遍历数据的基本步骤

《C++中使用vector存储并遍历数据的基本步骤》C++标准模板库(STL)提供了多种容器类型,包括顺序容器、关联容器、无序关联容器和容器适配器,每种容器都有其特定的用途和特性,:本文主要介绍C... 目录(1)容器及简要描述‌php顺序容器‌‌关联容器‌‌无序关联容器‌(基于哈希表):‌容器适配器‌:(

C#提取PDF表单数据的实现流程

《C#提取PDF表单数据的实现流程》PDF表单是一种常见的数据收集工具,广泛应用于调查问卷、业务合同等场景,凭借出色的跨平台兼容性和标准化特点,PDF表单在各行各业中得到了广泛应用,本文将探讨如何使用... 目录引言使用工具C# 提取多个PDF表单域的数据C# 提取特定PDF表单域的数据引言PDF表单是一

一文详解Python中数据清洗与处理的常用方法

《一文详解Python中数据清洗与处理的常用方法》在数据处理与分析过程中,缺失值、重复值、异常值等问题是常见的挑战,本文总结了多种数据清洗与处理方法,文中的示例代码简洁易懂,有需要的小伙伴可以参考下... 目录缺失值处理重复值处理异常值处理数据类型转换文本清洗数据分组统计数据分箱数据标准化在数据处理与分析过

大数据小内存排序问题如何巧妙解决

《大数据小内存排序问题如何巧妙解决》文章介绍了大数据小内存排序的三种方法:数据库排序、分治法和位图法,数据库排序简单但速度慢,对设备要求高;分治法高效但实现复杂;位图法可读性差,但存储空间受限... 目录三种方法:方法概要数据库排序(http://www.chinasem.cn对数据库设备要求较高)分治法(常

Python将大量遥感数据的值缩放指定倍数的方法(推荐)

《Python将大量遥感数据的值缩放指定倍数的方法(推荐)》本文介绍基于Python中的gdal模块,批量读取大量多波段遥感影像文件,分别对各波段数据加以数值处理,并将所得处理后数据保存为新的遥感影像... 本文介绍基于python中的gdal模块,批量读取大量多波段遥感影像文件,分别对各波段数据加以数值处

使用MongoDB进行数据存储的操作流程

《使用MongoDB进行数据存储的操作流程》在现代应用开发中,数据存储是一个至关重要的部分,随着数据量的增大和复杂性的增加,传统的关系型数据库有时难以应对高并发和大数据量的处理需求,MongoDB作为... 目录什么是MongoDB?MongoDB的优势使用MongoDB进行数据存储1. 安装MongoDB

Python MySQL如何通过Binlog获取变更记录恢复数据

《PythonMySQL如何通过Binlog获取变更记录恢复数据》本文介绍了如何使用Python和pymysqlreplication库通过MySQL的二进制日志(Binlog)获取数据库的变更记录... 目录python mysql通过Binlog获取变更记录恢复数据1.安装pymysqlreplicat

Linux使用dd命令来复制和转换数据的操作方法

《Linux使用dd命令来复制和转换数据的操作方法》Linux中的dd命令是一个功能强大的数据复制和转换实用程序,它以较低级别运行,通常用于创建可启动的USB驱动器、克隆磁盘和生成随机数据等任务,本文... 目录简介功能和能力语法常用选项示例用法基础用法创建可启动www.chinasem.cn的 USB 驱动