【论文速递】Remote Sensing2021 : 通过半全局匹配法的SAR立体图像DSM生成以及惩罚方程的评估

本文主要是介绍【论文速递】Remote Sensing2021 : 通过半全局匹配法的SAR立体图像DSM生成以及惩罚方程的评估,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

【论文原文】:Radargrammetric DSM Generation by Semi-Global Matching and Evaluation of Penalty Functions

论文地址:https://www.mdpi.com/2072-4292/14/8/1778

博主关键词: SAR图像立体像对,数字表面性模型(DSM),半全局匹配法(SGM)

摘要:

SAR立体测量是生成数字表面模型(DSM)的一种有用方法,也是InSAR技术的一种替代方法,InSAR技术受到时间或大气去相关的影响。立体图像匹配是指在两幅图像中确定同源点的过程。图像匹配的性能影响DSM的最终质量,DSM常用于用于景观和地形的时空分析。在SAR图像匹配中,通常使用局部匹配方法,但通常会产生稀疏和不准确的同源点,从而给最终结果增加模糊性;尽管可以产生更精确和密集的同源点,但很少应用全局或半全局匹配方法。为了填补这一空白,我们提出了一种分层半全局匹配法(SGM),以使用立体TerraSAR-X图像重建森林和山区的DSM。此外,在方法中应用了三项惩罚方法,并对其有效性进行了评估。为了在我们的SGM密集匹配方法和局部匹配方法之间进行精度和效率比较,还使用归一化互相关(NCC)局部匹配方法来使用相同的测试数据生成DSM。通过航空摄影测量参考DSM验证了本方法DSMs的精度,并与NASA 30m SRTM DEM的精度进行了比较。结果表明,SGM生成的DSM的高度精度和计算效率超过SRTM DEM和NCC衍生的DSM。采用Canny边缘检测器的惩罚函数比其他两个评估的惩罚函数产生更高的垂直精度。SGM是使用立体星载SAR图像生成高质量DSM的强大而有效的工具。

简介:

数字表面模型(DSM)是遥感应用中的基本数据集。合成孔径雷达(SAR)图像可用于构建数字表面模型。Radargrammetry类似于摄影测量,其中通过图像匹配计算立体图像上的对应差异,并用于导出3D点云。立体SAR图像匹配的准确性直接决定了最终DSM的质量。许多研究致力于立体图像匹配。本篇文章将半全局匹配(SGM)算法应用于立体SAR图像的配准,并生成最终的DSM。

Hirschmüller提出的半全局匹配(SGM)算法在精度和计算效率之间实现了折衷。SGM通过沿多条1D扫描线聚集成本来近似2D能量优化问题,大大减少了处理时间。通过将来自所有方向的匹配成本相加并选择成本最小的视差来确定逐像素视差。除了其精度和快速匹配速度之外,检索均匀表面以及保持尖锐高度不连续性的能力使SGM成为最有效的匹配算法之一。

在这篇文章中提出了一种分级SGM密集匹配方法,以在植被茂密的山区生成高质量的雷达测距DSM。使用覆盖中国中部嵩山的条纹图和聚光模式TerraSAR-X立体数据对,研究了半全局密集匹配算法的可行性和有效性。此外,还研究了三个惩罚函数对最终DSM垂直精度的影响。高分辨率航空摄影测量DSM用于验证雷达测距DSM的精度。NASA的30m分辨率SRTM DEM和通过分级NCC匹配方法提取的DSM也被用于比较。结果表明,SGM方法不仅产生了比SRTM DEM和NCC衍生的DSM更高垂直精度的DSM,而且比NCC局部匹配方法更有效。此外,利用Canny边缘检测器的惩罚函数提供了比恒定惩罚函数或立体SAR半全局匹配中的灰度梯度惩罚函数更高的垂直精度。在复杂山区,半全局匹配是局部匹配算法的有力替代工具,具有更高的精度和效率,可用于雷达测距DSM生成。

Fig1. 嵩山测试区的TerraSAR-X/TanDEM-X立体图像

Fig2.通过SGM_canny算法从条带立体像对对中生成带有山坡阴影的DSM。

【论文速递 | 精选】

阅读原文访问社区:https://bbs.csdn.net/forums/paper

这篇关于【论文速递】Remote Sensing2021 : 通过半全局匹配法的SAR立体图像DSM生成以及惩罚方程的评估的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/499501

相关文章

java中使用POI生成Excel并导出过程

《java中使用POI生成Excel并导出过程》:本文主要介绍java中使用POI生成Excel并导出过程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录需求说明及实现方式需求完成通用代码版本1版本2结果展示type参数为atype参数为b总结注:本文章中代码均为

在java中如何将inputStream对象转换为File对象(不生成本地文件)

《在java中如何将inputStream对象转换为File对象(不生成本地文件)》:本文主要介绍在java中如何将inputStream对象转换为File对象(不生成本地文件),具有很好的参考价... 目录需求说明问题解决总结需求说明在后端中通过POI生成Excel文件流,将输出流(outputStre

C/C++随机数生成的五种方法

《C/C++随机数生成的五种方法》C++作为一种古老的编程语言,其随机数生成的方法已经经历了多次的变革,早期的C++版本使用的是rand()函数和RAND_MAX常量,这种方法虽然简单,但并不总是提供... 目录C/C++ 随机数生成方法1. 使用 rand() 和 srand()2. 使用 <random

Flask 验证码自动生成的实现示例

《Flask验证码自动生成的实现示例》本文主要介绍了Flask验证码自动生成的实现示例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习... 目录生成图片以及结果处理验证码蓝图html页面展示想必验证码大家都有所了解,但是可以自己定义图片验证码

Python如何在Word中生成多种不同类型的图表

《Python如何在Word中生成多种不同类型的图表》Word文档中插入图表不仅能直观呈现数据,还能提升文档的可读性和专业性,本文将介绍如何使用Python在Word文档中创建和自定义各种图表,需要的... 目录在Word中创建柱形图在Word中创建条形图在Word中创建折线图在Word中创建饼图在Word

使用Python开发一个图像标注与OCR识别工具

《使用Python开发一个图像标注与OCR识别工具》:本文主要介绍一个使用Python开发的工具,允许用户在图像上进行矩形标注,使用OCR对标注区域进行文本识别,并将结果保存为Excel文件,感兴... 目录项目简介1. 图像加载与显示2. 矩形标注3. OCR识别4. 标注的保存与加载5. 裁剪与重置图像

Nginx中location实现多条件匹配的方法详解

《Nginx中location实现多条件匹配的方法详解》在Nginx中,location指令用于匹配请求的URI,虽然location本身是基于单一匹配规则的,但可以通过多种方式实现多个条件的匹配逻辑... 目录1. 概述2. 实现多条件匹配的方式2.1 使用多个 location 块2.2 使用正则表达式

grom设置全局日志实现执行并打印sql语句

《grom设置全局日志实现执行并打印sql语句》本文主要介绍了grom设置全局日志实现执行并打印sql语句,包括设置日志级别、实现自定义Logger接口以及如何使用GORM的默认logger,通过这些... 目录gorm中的自定义日志gorm中日志的其他操作日志级别Debug自定义 Loggergorm中的

nginx生成自签名SSL证书配置HTTPS的实现

《nginx生成自签名SSL证书配置HTTPS的实现》本文主要介绍在Nginx中生成自签名SSL证书并配置HTTPS,包括安装Nginx、创建证书、配置证书以及测试访问,具有一定的参考价值,感兴趣的可... 目录一、安装nginx二、创建证书三、配置证书并验证四、测试一、安装nginxnginx必须有"-

Java实战之利用POI生成Excel图表

《Java实战之利用POI生成Excel图表》ApachePOI是Java生态中处理Office文档的核心工具,这篇文章主要为大家详细介绍了如何在Excel中创建折线图,柱状图,饼图等常见图表,需要的... 目录一、环境配置与依赖管理二、数据源准备与工作表构建三、图表生成核心步骤1. 折线图(Line Ch