2023年国赛高教杯数学建模A题定日镜场的优化设计解题全过程文档及程序

本文主要是介绍2023年国赛高教杯数学建模A题定日镜场的优化设计解题全过程文档及程序,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

2023年国赛高教杯数学建模

A题 定日镜场的优化设计

原题再现

  构建以新能源为主体的新型电力系统,是我国实现“碳达峰”“碳中和”目标的一项重要措施。塔式太阳能光热发电是一种低碳环保的新型清洁能源技术[1]。
  定日镜是塔式太阳能光热发电站(以下简称塔式电站)收集太阳能的基本组件,其底座由纵向转轴和水平转轴组成,平面反射镜安装在水平转轴上。纵向转轴的轴线与地面垂直,可以控制反射镜的方位角。水平转轴的轴线与地面平行,可以控制反射镜的俯仰角,定日镜及底座示意图见图 1。两转轴的交点(也是定日镜中心)离地面的高度称为定日镜的安装高度。塔式电站利用大量的定日镜组成阵列,称为定日镜场。定日镜将太阳光反射汇聚到安装在镜场中吸收塔顶端上的集热器,加热其中的导热介质,并将太阳能以热能形式储存起来,再经过热交换实现由热能向电能的转化。太阳光并非平行光线, 而是具有一定锥形角的一束锥形光线,因此太阳入射光线经定日镜任意一点的反射光线也是一束锥形光线[2]。定日镜在工作时,控制系统根据太阳的位置实时控制定日镜的法向,使得太阳中心点发出的光线经定日镜中心反射后指向集热器中心。集热器中心的离地高度称为吸收塔高度。
在这里插入图片描述
  现计划在中心位于东经 98.5∘,北纬 39.4∘,海拔 3000 m,半径 350 m 的圆形区域内建设一个圆形定日镜场(图 2)。以圆形区域中心为原点,正东方向为 𝑥 轴正向,正北方向为 𝑦 轴正向,垂直于地面向上方向为 z 轴正向建立坐标系,称为镜场坐标系。
  规划的吸收塔高度为 80 m,集热器采用高 8 m、直径 7 m 的圆柱形外表受光式集热器。吸收塔周围 100 m 范围内不安装定日镜,留出空地建造厂房,用于安装发电、储能、控制等设备。定日镜的形状为平面矩形,其上下两条边始终平行于地面,这两条边之间的距离称为镜面高度,镜面左右两条边之间的距离称为镜面宽度,通常镜面宽度不小于镜面高度。镜面边长在 2 m 至8 m 之间,安装高度在 2 m 至 6 m 之间,安装高度必须保证镜面在绕水平转轴旋转时不会触及地面。由于维护及清洗车辆行驶的需要,要求相邻定日镜底座中心之间的距离比镜面宽度多 5 m以上。
  为简化计算,本问题中所有“年均”指标的计算时点均为当地时间每月 21 日 9:00、10:30、12:00、13:30、15:00。

在这里插入图片描述
  请建立模型解决以下问题:
  问题 1 若将吸收塔建于该圆形定日镜场中心,定日镜尺寸均为 6 m×6 m,安装高度均为4 m,且给定所有定日镜中心的位置(以下简称为定日镜位置,相关数据见附件),请计算该定日镜场的年平均光学效率、年平均输出热功率,以及单位镜面面积年平均输出热功率(光学效率及输出热功率的定义见附录)。请将结果分别按表 1 和表 2 的格式填入表格。
  问题 2 按设计要求,定日镜场的额定年平均输出热功率(以下简称额定功率)为 60 MW。若所有定日镜尺寸及安装高度相同,请设计定日镜场的以下参数:吸收塔的位置坐标、定日镜尺寸、安装高度、定日镜数目、定日镜位置,使得定日镜场在达到额定功率的条件下,单位镜面面积年平均输出热功率尽量大。请将结果分别按表 1、2、3 的格式填入表格,并将吸收塔的位置坐标、定日镜尺寸、安装高度、位置坐标按模板规定的格式保存到 result2.xlsx 文件中。
  问题 3 如果定日镜尺寸可以不同,安装高度也可以不同,额定功率设置同问题 2,请重新设计定日镜场的各个参数,使得定日镜场在达到额定功率的条件下,单位镜面面积年平均输出热功率尽量大。请将结果分别按表 1、表 2 和表 3 的格式填入表格,并将吸收塔的位置坐标、各定日镜尺寸、安装高度、位置坐标按模板规定的格式保存到 result3.xlsx 文件中。
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

整体求解过程概述(摘要)

  塔式太阳能光热发电是一种较为理想的、技术发展相对成熟的大规模利用太阳能发电的技术,定日镜是其收集太阳能的重要基本组件,通过数学建模对定日镜场的各项参数进行优化设计,使得单位镜面面积年平均输出热功率最大具有重大的现实意义也是我们亟待解决的问题。
  针对问题一,我们构建了定日镜场年平均输出热功率模型。首先,求解太阳高度角和太阳方位角来确定每一时刻太阳所在位置;接着,通过定日镜的工作原理,由某一时刻入射光线和反射光线的方向推得定日镜在该时刻的法向,进而推得其俯仰角和方位角;然后,基于上述信息计算每一块定日镜在该时刻的光学效率,包括镜面反射率、大气透射率、余弦效率、阴影遮挡效率以及集热器截断效率,其中阴影遮挡效率由投影法求出,集热器截断效率由蒙特卡洛算法求出;最后,结合法向直接辐射照度以及定日镜场输出热功率的计算公式,代入定日镜的光学效率等数据我们求出了定日镜场在不同时刻的输出热功率,进而得到年平均输出热功率以及单位面积镜面年平均输出热功率。最终我们得到了定日镜场的年平均光学效率为0.6275,年平均输出热功率为38.295MW,单位镜面面积年平均输出热功率为06096kW/㎡,其余结果详见表1表2。
  针对问题二,我们构建了定日镜场统一优化设计的单目标优化模型。我们以单位镜面面积的年平均输出热功率最大为目标函数,以定日镜场中吸收塔的位置坐标、定日镜的统一尺寸和统一安装高度、定日镜的个数以及定日镜的位置等参数作为决策变量,以定日镜场的年平均额定输出功率、相邻定日镜之间应满足的距离等要求确定了多个约束条件,建立起单目标优化模型。由于决策变量的数量很多,因此我们采用遗传算法对该单目标优化模型进行求解,最终求得了单位镜面面积年平均输出热功率最大为0.7139kW/㎡,此时年平均输出热功率为60.373MW,定日镜的分布为一圈圈同心圆,其余定日镜场的最优设计参数详见表3及result2xlsx。
  针对问题三,我们构建了定日镜场非统一优化设计的单目标优化模型。相较于问题二,问题三中各个定日镜的尺寸和安装高度并不统一,决策变量的数量进一步增多,为了简化模型,我们参考问题二中求得的结论,认为在问题三中定日镜仍按照同心圆的方式进行排布,又因为同心圆具有各项同性,所以我们可以假设每一圈同心圆上的所有定日镜的尺寸和安装高度相同,因此新增的决策变量减少为每一圈同心圆对应的定日镜的尺寸和安装高度,其余目标函数和约束条件均与第二问相同。在求解时,我们在同心圆排布的基础上采用变步长的方式进行遍历求解,最终求得了单位镜面面积年平均输出热功率最大为0.7551KW/㎡,此时年平均输出热功率为60.359MW,定日镜的整体分布近似为一个抛物面,其余定日镜场的最优设计参数详见表 6及result3.xlsx。

模型假设:

  1、假设天气一直保持晴朗,太阳光线不会被云层遮盖
  2、假设不发生光的散射
  3、假设镜面反射率可以取为常数
  4、假设每条反射光线携带的能量是相同的

问题分析:

  问题一的分析
  问题一要求我们求解给定条件下定日镜场的年平均光学效率、年平均输出热功率以及单位镜面面积年平均输出热功率。首先,我们可以通过求解太阳高度角和太阳方位角来确定每一时刻太阳所在位置;接着,通过定日镜的工作原理我们可以由某一时刻入射光线和反射光线的方向推得定日镜在该时刻法向,进而推得其俯仰角和方位角然后,基于上述信息我们可以计算每一块定日镜在该时刻的阴影遮挡效率、余弦效率、大气透射率、集热器截断效率以及镜面反射率,从而得出定日镜的光学效率,将不同时刻不同定日镜的光学效率求和取平均即可得到年平均光学效率:最后,再结合法向直接辐射照度DNI以及定日镜场的输出热功率的计算公式,通过代入定日镜的光学效率等数据我们就可以求出定日镜场在不同时刻的输出热功率,进而求出年平均输出热功率以及单位面积镜面年平均输出热功率。

  问题二的分析
  问题二要求我们对,使得定日镜场的年平均输出热功率在达到额定功率60MV的条件下,单位镜面面积的年平均输出热功率尽可能大。我们将其理解为一个单目标优化问题,因此我们以单位镜面面积的年平均输出热功率最大为目标函数,以定日镜场中吸收塔的位置坐标、定日镜的统一尺寸和统一安装高度、定日镜的个数以及定日镜的位置等参数作为决策变量,再根据题意确立多个约束条件,建立起单目标优化模型。由于要求解的决策变量的数量很多,传统的遍历算法显然是行不通的,因此我们可以采用遗传算法对该单目标优化模型进行求解。

  问题三的分析
  相较于问题二,问题三中各个定日镜的尺寸和安装高度并不统一,这导致了决策变量的数量进一步增多,为了简化模型,我们可以参考问题二中求得的结论,认为在问题三中定日镜仍按照同心圆的方式进行排布,又因为同心圆具有各项同性,所以我们可以假设每一圈同心圆上的所有定日镜的尺寸和安装高度相同,因此新增的决策变量减少为每一圈同心圆对应的定日镜的尺寸和安装高度,其余目标函数和约束条件均与第二问相同。在求解时,我们可以在定日镜同心圆排布的基础上对每圈定日镜的尺寸及安装高度以及位置坐标采用变步长的方式进行遍历求解。

模型的建立与求解整体论文缩略图

在这里插入图片描述
在这里插入图片描述

全部论文请见下方“ 只会建模 QQ名片” 点击QQ名片即可

程序代码:(代码和文档not free)

%遗传算法
function f=canshul(x)
%目标函数N=2739;H-4;lw=6;1=6;w=6;x0=0;y0=-250;ST=[9,10.5,12,13.5,15];D=[306,337,0,31,61,92,122,153,184,214,245,275];xyz=[x(1:N)',x(N+1:2*N)',zeros(N,1)+x(3)];e2=zeros(12,5);for i-1:5for j=1:12[A,B]=SUN(ST(i),D(j));e2(j,i)=f2(xyz,N,x0,y0,A,B);endendSe2=mean(e2.'al1')f=Se2;
end
%计算阴影遮挡效率function el=fl(xyz,1,w,N,A,B,x0,y0)Z0=84;a=[sind(B)*cosd(A),cosd(B)*cosd(A),sind(A)];tt=zeros(length(xyz),5);for i=1:size(xyz,1)m=sgrt(xyz(i,1)^2+xyz(1,1)^2+xyz(1,3));r=[-xyz(i,1)+x0,-xyz(i,2)+y0,-xyz(i,3)+z0]/sqrt((xyz(i,1)-x0)^2+(xyz(i,2)-y0)^2+(xyz(i,3)-z0)^2)n=real((r-a)/norm(r-a));An-acos(n(3));Bn=atan(n(1)/n(2));ss=[cosd(Bn],sind(Bn)*sind(An],-sind(Bn]*cosd(An];-sind(Bn],cosd(Bn)*sind	(An],-cosd(Bn)*cosd(An];0,cosd(An),sind[An];];v1=[ss*[-0.5*1,-0.5*w,o]']+xyz(i,:};v2=[ss*[0.5*1,-0.5w,0]"]'+xyz(i,:);v3=[ss*[-0.51,0.5*w,0]"]'+xyz(i,:);tt[i,1)=v1(1);tt[i,2)=v1(2);tt[i,4)=real(abs[sum[(v1-v2).*a)));tt[i,3)-real(abs[sum(v1-v3).*a)));endnum . size(tt, 1);for i = i:numareas=0;for j = i+1:numarea = rectint(tt(i,:),tt(j,:));areas = areas + area;endtt(1,5)-areas;
endSSS-(88/tand(A)-100)*7;if sss<0sss=0;
ende1=1-(sum(tt(:,5))+SSS)/N/1/w;
end
function [e2,SS]=f2(xyz,N,x0,y0,A,B)
%余弦效率z0=84;SS=zeros(length(xyz),1);for i=1:Nb=(xyz(i,1)=x0,xyz(i,2)=y0,xyz(i,3)=z0);%反射光线b=-1.*b;a=[sind(B)*cosd(A],cosd(B]*cosd(A],sind(A]];&入射光线ta = acosd(dot{a,b)/(normla]*norm(b)));入射光线与反射光线夹角SS(i)=real(cosd(ta/2)];ende2=mean(ss);
end
全部论文请见下方“ 只会建模 QQ名片” 点击QQ名片即可

这篇关于2023年国赛高教杯数学建模A题定日镜场的优化设计解题全过程文档及程序的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/497877

相关文章

基于C++的UDP网络通信系统设计与实现详解

《基于C++的UDP网络通信系统设计与实现详解》在网络编程领域,UDP作为一种无连接的传输层协议,以其高效、低延迟的特性在实时性要求高的应用场景中占据重要地位,下面我们就来看看如何从零开始构建一个完整... 目录前言一、UDP服务器UdpServer.hpp1.1 基本框架设计1.2 初始化函数Init详解

Django调用外部Python程序的完整项目实战

《Django调用外部Python程序的完整项目实战》Django是一个强大的PythonWeb框架,它的设计理念简洁优雅,:本文主要介绍Django调用外部Python程序的完整项目实战,文中通... 目录一、为什么 Django 需要调用外部 python 程序二、三种常见的调用方式方式 1:直接 im

SpringBoot整合Zuul全过程

《SpringBoot整合Zuul全过程》Zuul网关是微服务架构中的重要组件,具备统一入口、鉴权校验、动态路由等功能,它通过配置文件进行灵活的路由和过滤器设置,支持Hystrix进行容错处理,还提供... 目录Zuul网关的作用Zuul网关的应用1、网关访问方式2、网关依赖注入3、网关启动器4、网关全局变

C#如何在Excel文档中获取分页信息

《C#如何在Excel文档中获取分页信息》在日常工作中,我们经常需要处理大量的Excel数据,本文将深入探讨如何利用Spire.XLSfor.NET,高效准确地获取Excel文档中的分页信息,包括水平... 目录理解Excel中的分页机制借助 Spire.XLS for .NET 获取分页信息为什么选择 S

Java利用Spire.XLS for Java自动化设置Excel的文档属性

《Java利用Spire.XLSforJava自动化设置Excel的文档属性》一个专业的Excel文件,其文档属性往往能大大提升文件的可管理性和可检索性,下面我们就来看看Java如何使用Spire... 目录Spire.XLS for Java 库介绍与安装Java 设置内置的 Excel 文档属性Java

Python自动化提取多个Word文档的文本

《Python自动化提取多个Word文档的文本》在日常工作和学习中,我们经常需要处理大量的Word文档,本文将深入探讨如何利用Python批量提取Word文档中的文本内容,帮助你解放生产力,感兴趣的小... 目录为什么需要批量提取Word文档文本批量提取Word文本的核心技术与工具安装 Spire.Doc

C#高效实现在Word文档中自动化创建图表的可视化方案

《C#高效实现在Word文档中自动化创建图表的可视化方案》本文将深入探讨如何利用C#,结合一款功能强大的第三方库,实现在Word文档中自动化创建图表,为你的数据呈现和报告生成提供一套实用且高效的解决方... 目录Word文档图表自动化:为什么选择C#?从零开始:C#实现Word文档图表的基本步骤深度优化:C

使用Python将PDF表格自动提取并写入Word文档表格

《使用Python将PDF表格自动提取并写入Word文档表格》在实际办公与数据处理场景中,PDF文件里的表格往往无法直接复制到Word中,本文将介绍如何使用Python从PDF文件中提取表格数据,并将... 目录引言1. 加载 PDF 文件并准备 Word 文档2. 提取 PDF 表格并创建 Word 表格

windows下安装Nginx全过程

《windows下安装Nginx全过程》文章介绍了HTTP和反向代理服务器的概念,包括正向代理和反向代理的区别,并详细描述了如何安装和配置Nginx作为反向代理服务器... 目录概念代理正向代理反向代理安装基本属性nginx.conf查询结构属性使用运行重启停止总结概念是一个高性能的HTTP和反向代理we

C#借助Spire.XLS for .NET实现在Excel中添加文档属性

《C#借助Spire.XLSfor.NET实现在Excel中添加文档属性》在日常的数据处理和项目管理中,Excel文档扮演着举足轻重的角色,本文将深入探讨如何在C#中借助强大的第三方库Spire.... 目录为什么需要程序化添加Excel文档属性使用Spire.XLS for .NET库实现文档属性管理Sp