数字病理图像分析的开源软件qupath学习 ①

2023-12-15 06:12

本文主要是介绍数字病理图像分析的开源软件qupath学习 ①,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

介绍:QuPath是一种新的生物图像分析软件,旨在满足对用户友好、可扩展、开源解决方案日益增长的需求,用于数字病理学和全玻片图像分析。除了提供全面的肿瘤识别和高通量生物标志物评估工具外,QuPath 还为研究人员提供了强大的批处理和脚本功能,以及一个可扩展的平台,用于开发和共享分析复杂组织图像的新算法。此外,QuPath的灵活设计使其适用于生物医学研究中的各种其他图像分析应用。

使用:它提供了第一个全面的开源桌面软件应用程序,专门用于分析和探索整个玻片成像数据。其核心是一个跨平台、多线程、基于图块的全幻灯片图像查看器,其中包含广泛的注释和可视化工具。最重要的是,QuPath提供了一系列新颖的算法,不仅为病理学中常见的、具有挑战性的分析问题提供现成的、用户友好的解决方案,而且还提供了创建自定义工作流程的构建块,并将它们链接在一起,通过强大的脚本功能进行批处理。


文献示例过程:

TMA:从每个病例的肿瘤中心取三个代表性区域进行注释,单个代表性肿瘤块中切割一个新的切片进行H&E染色,注释为组织微阵列( tissue microarray TMA)。用从供体块中手动穿刺提取直径为1毫米的组织核心(应该是作为TMA)。

免疫组化:CD3 、CD8、p53 和 PD-L1。

扫片:所有 TMA 载玻片均使用 Aperio ScanScope CS 全玻片扫描仪以 40 倍放大倍率扫描,分辨率为 0.25 μm/像素。H&E玻片扫描:231个在Aperio ScanScope扫描仪上扫描,81个在滨松纳米变焦器上扫描,分辨率都在0.231-0.253 μm/像素范围内。

QuPath分析数据:通过使用颜色反卷积分离染色剂并识别平滑后苏木精通道 (CD3) 或苏木精和 DAB 通道总和 (CD8) 中的峰来鉴定单个细胞,并根据平滑的 DAB 通道信息将这些细胞分配为阳性或阴性细胞。使用检测到的阳性细胞数和面积来计算每平方毫米的平均阳性细胞数。设置强度阈值以根据平均核 DAB 光密度进一步将肿瘤细胞细分为 p53 染色的阴性、弱、中度或强阳性。通过添加 3x% 强染色的肿瘤细胞核、2x% 中度染色的肿瘤细胞核和 1x% 弱染色的肿瘤细胞核来计算每个组织核心的 H 评分,给出的结果范围为 0(所有肿瘤核阴性)到 300(所有肿瘤核强阳性)。基质识别:H&E全切片肿瘤间质百分比分析。先用 QuPath 的手动注释工具在所有 312 张 H&E 染色载玻片上注释了具有代表性的肿瘤区域。然后批量应用脚本,自动识别和设置每个图像的红色、绿色和蓝色通道的平均背景强度。然后病理学家用40张切片交互式训练随机树分类器来区分肿瘤上皮、基质和“其他”(空白、粘液、正常肌肉或坏死等)。然后计算肿瘤基质百分比 (TSP) :TSP = AS/(AE + AS) × 100 %

AS 表示归类为基质的总面积,AE 表示归类为上皮的总面积。

解释:(a-d)对 CD3、CD8、p53 和 PD-L1 染色的 TMA 生物标志物评分进行 Kaplan Meier 生存分析。(e) Kaplan Meier 曲线显示基于中位肿瘤基质百分比的患者分层。代表性图像分别显示了高基质百分比和低基质百分比的肿瘤的原始图像和标记。绿色表示被归类为基质的区域,深红色表示肿瘤上皮,而黄色表示其他分类的组织或空白。


作为深度学习神经网络的训练工具

QuPath为高级人工智能的训练、提供和应用提供了一个框架,超越了内置的机器学习方法。该框架可以包括任何内容,从通过病理学家注释或补丁提取来训练更高级的深度学习神经网络,到最终在QuPath之外获取的数据上训练的深度学习模型的可视化。

参考:

1:QuPath: Open source software for digital pathology image analysis - PMC (nih.gov)

2:QuPath: The global impact of an open source digital pathology system

3:qupath/qupath: QuPath - Bioimage analysis & digital pathology (github.com)

4:Projects — QuPath 0.5.0 documentation

5:【笔记】QuPath用于免疫组化定量评估 - 知乎 (zhihu.com)

6:实验动物病理学切片开源处理软件QuPath官方免疫组化教程Qupath IHC_哔哩哔哩_bilibili

这篇关于数字病理图像分析的开源软件qupath学习 ①的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/495398

相关文章

基于WinForm+Halcon实现图像缩放与交互功能

《基于WinForm+Halcon实现图像缩放与交互功能》本文主要讲述在WinForm中结合Halcon实现图像缩放、平移及实时显示灰度值等交互功能,包括初始化窗口的不同方式,以及通过特定事件添加相应... 目录前言初始化窗口添加图像缩放功能添加图像平移功能添加实时显示灰度值功能示例代码总结最后前言本文将

Redis主从/哨兵机制原理分析

《Redis主从/哨兵机制原理分析》本文介绍了Redis的主从复制和哨兵机制,主从复制实现了数据的热备份和负载均衡,而哨兵机制可以监控Redis集群,实现自动故障转移,哨兵机制通过监控、下线、选举和故... 目录一、主从复制1.1 什么是主从复制1.2 主从复制的作用1.3 主从复制原理1.3.1 全量复制

Redis主从复制的原理分析

《Redis主从复制的原理分析》Redis主从复制通过将数据镜像到多个从节点,实现高可用性和扩展性,主从复制包括初次全量同步和增量同步两个阶段,为优化复制性能,可以采用AOF持久化、调整复制超时时间、... 目录Redis主从复制的原理主从复制概述配置主从复制数据同步过程复制一致性与延迟故障转移机制监控与维

Redis连接失败:客户端IP不在白名单中的问题分析与解决方案

《Redis连接失败:客户端IP不在白名单中的问题分析与解决方案》在现代分布式系统中,Redis作为一种高性能的内存数据库,被广泛应用于缓存、消息队列、会话存储等场景,然而,在实际使用过程中,我们可能... 目录一、问题背景二、错误分析1. 错误信息解读2. 根本原因三、解决方案1. 将客户端IP添加到Re

Redis主从复制实现原理分析

《Redis主从复制实现原理分析》Redis主从复制通过Sync和CommandPropagate阶段实现数据同步,2.8版本后引入Psync指令,根据复制偏移量进行全量或部分同步,优化了数据传输效率... 目录Redis主DodMIK从复制实现原理实现原理Psync: 2.8版本后总结Redis主从复制实

锐捷和腾达哪个好? 两个品牌路由器对比分析

《锐捷和腾达哪个好?两个品牌路由器对比分析》在选择路由器时,Tenda和锐捷都是备受关注的品牌,各自有独特的产品特点和市场定位,选择哪个品牌的路由器更合适,实际上取决于你的具体需求和使用场景,我们从... 在选购路由器时,锐捷和腾达都是市场上备受关注的品牌,但它们的定位和特点却有所不同。锐捷更偏向企业级和专

Ubuntu 怎么启用 Universe 和 Multiverse 软件源?

《Ubuntu怎么启用Universe和Multiverse软件源?》在Ubuntu中,软件源是用于获取和安装软件的服务器,通过设置和管理软件源,您可以确保系统能够从可靠的来源获取最新的软件... Ubuntu 是一款广受认可且声誉良好的开源操作系统,允许用户通过其庞大的软件包来定制和增强计算体验。这些软件

Spring中Bean有关NullPointerException异常的原因分析

《Spring中Bean有关NullPointerException异常的原因分析》在Spring中使用@Autowired注解注入的bean不能在静态上下文中访问,否则会导致NullPointerE... 目录Spring中Bean有关NullPointerException异常的原因问题描述解决方案总结

python中的与时间相关的模块应用场景分析

《python中的与时间相关的模块应用场景分析》本文介绍了Python中与时间相关的几个重要模块:`time`、`datetime`、`calendar`、`timeit`、`pytz`和`dateu... 目录1. time 模块2. datetime 模块3. calendar 模块4. timeit

python-nmap实现python利用nmap进行扫描分析

《python-nmap实现python利用nmap进行扫描分析》Nmap是一个非常用的网络/端口扫描工具,如果想将nmap集成进你的工具里,可以使用python-nmap这个python库,它提供了... 目录前言python-nmap的基本使用PortScanner扫描PortScannerAsync异