RANSAC算法拟合平面实现(附代码c++)

2023-12-14 23:40

本文主要是介绍RANSAC算法拟合平面实现(附代码c++),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

机械视觉3D检测项目中遇到的一些问题:

项目场景:

工业视觉双目条纹检测:
项目场景:示例:条纹投影检测芯片引脚高度


问题描述:

在做双目视觉,条纹投影获取点云图后,会遇到噪声点比较多的问题,并且这些噪声点是由于反光引起的,所以没有办法有效剔除噪声点,就会影响我们计算3D点的准确度。 在获取到点云数据后,我进行了滤波,然后将我认为没有异常的点拟合了一个平面,然后再去求我想要的某个point(x,y,z)到平面的距离,这就计算出了某个点相对于平面的距离,这也是项目中用来求高度比较通用的算法。

例如:噪声点剔除不完全,某些极大噪声点会拉斜拟合的平面。


原因分析:

出错原因:是因为我想剔除噪声点,但是很难找到能满足剔除所有噪声点的条件。
比如我设置了,高度剔除,像素剔除,但是这都不能满足噪声点剔除条件,并且噪声点是完全随机的,不可避免的。
从本质上,就不该采用剔除噪声点去拟合平面,这时我找到了RANSAC算法,可谓是完全避开噪声点,
此算法只用三个点去拟合平面,并且设置一个阈值距离,看看有多少个点可以满足这个距离,就记下这个number,然后可以迭代n次,这n次中,number最多的那次拟合出的平面,就可以保证是你最想要的平面。
由于只用了三个点来拟合平面,所有完全不担心噪声点来拉高平面。
活不多说,上代码。(c++)


解决方案:

RANSAC算法:
原理:---------------基于ransac算法平面检测:
1、确定迭代次数;
2、在迭代次数内:
2.1 随机选择三个点组成平面(判断三个点是否共线);
2.2 构造坐标矩阵;
2.3 求平面方程;
2.4 求所有点到平面的距离;
2.5 统计inlier个数(距离小于阈值);
3、迭代选择inlier个数最多的平面。

已知三个点坐标为P1(x1,y1,z1), P2(x2,y2,z2), P3(x3,y3,z3),求过他们的平面方程:
设方程为A(x - x1) + B(y - y1) + C(z - z1) = 0 (点法式) (也可设为过另外两个点),则有
A = (y3 - y1)(z3 - z1) - (z2 -z1)(y3 - y1);
B = (x3 - x1)(z2 - z1) - (x2 - x1)(z3 - z1);
C = (x2 - x1)(y3 - y1) - (x3 - x1)(y2 - y1);

//"ransac.h"
void ransac( std::vector<cv::Point3f>& pts_3d, int max_iter, float threshold);
//需要配置opencv,用到了opencv的Point3f
#include"ransac.h"
void ransac( std::vector<cv::Point3f>& pts_3d, int max_iter, float threshold)
{srand(time(0)); //随机种子int size_old = 3;double a, b, c, d; //平面法向量系数while (--max_iter) //设置循环的次数{vector<int> index;for (int k = 0; k < 3; ++k){index.push_back(rand() % pts_3d.size()); //随机选取三个点 }		auto idx = index.begin();double x1 = pts_3d.at(*idx).x, y1 = pts_3d.at(*idx).y, z1 = pts_3d.at(*idx).z; ++idx;double x2 = pts_3d.at(*idx).x, y2 = pts_3d.at(*idx).y, z2 = pts_3d.at(*idx).z; ++idx;double x3 =pts_3d.at(*idx).x, y3 = pts_3d.at(*idx).y, z3 = pts_3d.at(*idx).z; a = (y2 - y1)*(z3 - z1) - (z2 - z1)*(y3 - y1);b = (z2 - z1)*(x3 - x1) - (x2 - x1)*(z3 - z1);c = (x2 - x1)*(y3 - y1) - (y2 - y1)*(x3 - x1);d = -(a*x1 + b*y1 + c*z1);for (auto iter = pts_3d.begin(); iter != pts_3d.end(); ++iter){ double dis = fabs(a*iter->x + b*iter->y + c*iter->z + d) / sqrt(a*a + b*b + c*c);//点到平面的距离公式if (dis < threshold)	index.push_back(iter - pts_3d.begin());}//更新集合if (index.size() > size_old){size_old = index.size();}index.clear();}cout << a << " " << b << " " << c << " " << d << endl;	
}

附上一张图片看看效果,
绿色线:RANSA拟合结果;红色线:最小二乘法拟合结果;蓝色线:期望的理想结果绿色线:RANSA拟合结果;红色线:最小二乘法拟合结果;蓝色线:期望的理想结果
图片转载自:https://blog.csdn.net/leonardohaig/article/details/104570965?ops_request_misc=%257B%2522request%255Fid%2522%253A%2522163089018316780255218394%2522%252C%2522scm%2522%253A%252220140713.130102334.pc%255Fall.%2522%257D&request_id=163089018316780255218394&biz_id=0&utm_medium=distribute.pc_search_result.none-task-blog-2allfirst_rank_ecpm_v1~rank_v29-10-104570965.pc_search_ecpm_flag&utm_term=ransac%E7%AE%97%E6%B3%95%E6%8B%9F%E5%90%88%E5%B9%B3%E9%9D%A2&spm=1018.2226.3001.4187
代码参考:https://blog.csdn.net/taifyang/article/details/117636554?ops_request_misc=%257B%2522request%255Fid%2522%253A%2522163089058616780274150003%2522%252C%2522scm%2522%253A%252220140713.130102334.pc%255Fall.%2522%257D&request_id=163089058616780274150003&biz_id=0&utm_medium=distribute.pc_search_result.none-task-blog-2allfirst_rank_ecpm_v1~rank_v29-6-117636554.pc_search_ecpm_flag&utm_term=Ransac%E6%8B%9F%E5%90%88%E5%B9%B3%E9%9D%A2&spm=1018.2226.3001.4187

这篇关于RANSAC算法拟合平面实现(附代码c++)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/494321

相关文章

C++中全局变量和局部变量的区别

《C++中全局变量和局部变量的区别》本文主要介绍了C++中全局变量和局部变量的区别,全局变量和局部变量在作用域和生命周期上有显著的区别,下面就来介绍一下,感兴趣的可以了解一下... 目录一、全局变量定义生命周期存储位置代码示例输出二、局部变量定义生命周期存储位置代码示例输出三、全局变量和局部变量的区别作用域

C++中assign函数的使用

《C++中assign函数的使用》在C++标准模板库中,std::list等容器都提供了assign成员函数,它比操作符更灵活,支持多种初始化方式,下面就来介绍一下assign的用法,具有一定的参考价... 目录​1.assign的基本功能​​语法​2. 具体用法示例​​​(1) 填充n个相同值​​(2)

Spring StateMachine实现状态机使用示例详解

《SpringStateMachine实现状态机使用示例详解》本文介绍SpringStateMachine实现状态机的步骤,包括依赖导入、枚举定义、状态转移规则配置、上下文管理及服务调用示例,重点解... 目录什么是状态机使用示例什么是状态机状态机是计算机科学中的​​核心建模工具​​,用于描述对象在其生命

Spring Boot 结合 WxJava 实现文章上传微信公众号草稿箱与群发

《SpringBoot结合WxJava实现文章上传微信公众号草稿箱与群发》本文将详细介绍如何使用SpringBoot框架结合WxJava开发工具包,实现文章上传到微信公众号草稿箱以及群发功能,... 目录一、项目环境准备1.1 开发环境1.2 微信公众号准备二、Spring Boot 项目搭建2.1 创建

IntelliJ IDEA2025创建SpringBoot项目的实现步骤

《IntelliJIDEA2025创建SpringBoot项目的实现步骤》本文主要介绍了IntelliJIDEA2025创建SpringBoot项目的实现步骤,文中通过示例代码介绍的非常详细,对大家... 目录一、创建 Spring Boot 项目1. 新建项目2. 基础配置3. 选择依赖4. 生成项目5.

Linux下删除乱码文件和目录的实现方式

《Linux下删除乱码文件和目录的实现方式》:本文主要介绍Linux下删除乱码文件和目录的实现方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录linux下删除乱码文件和目录方法1方法2总结Linux下删除乱码文件和目录方法1使用ls -i命令找到文件或目录

SpringBoot+EasyExcel实现自定义复杂样式导入导出

《SpringBoot+EasyExcel实现自定义复杂样式导入导出》这篇文章主要为大家详细介绍了SpringBoot如何结果EasyExcel实现自定义复杂样式导入导出功能,文中的示例代码讲解详细,... 目录安装处理自定义导出复杂场景1、列不固定,动态列2、动态下拉3、自定义锁定行/列,添加密码4、合并

mybatis执行insert返回id实现详解

《mybatis执行insert返回id实现详解》MyBatis插入操作默认返回受影响行数,需通过useGeneratedKeys+keyProperty或selectKey获取主键ID,确保主键为自... 目录 两种方式获取自增 ID:1. ​​useGeneratedKeys+keyProperty(推

Spring Boot集成Druid实现数据源管理与监控的详细步骤

《SpringBoot集成Druid实现数据源管理与监控的详细步骤》本文介绍如何在SpringBoot项目中集成Druid数据库连接池,包括环境搭建、Maven依赖配置、SpringBoot配置文件... 目录1. 引言1.1 环境准备1.2 Druid介绍2. 配置Druid连接池3. 查看Druid监控

Linux在线解压jar包的实现方式

《Linux在线解压jar包的实现方式》:本文主要介绍Linux在线解压jar包的实现方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录linux在线解压jar包解压 jar包的步骤总结Linux在线解压jar包在 Centos 中解压 jar 包可以使用 u