RANSAC算法拟合平面实现(附代码c++)

2023-12-14 23:40

本文主要是介绍RANSAC算法拟合平面实现(附代码c++),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

机械视觉3D检测项目中遇到的一些问题:

项目场景:

工业视觉双目条纹检测:
项目场景:示例:条纹投影检测芯片引脚高度


问题描述:

在做双目视觉,条纹投影获取点云图后,会遇到噪声点比较多的问题,并且这些噪声点是由于反光引起的,所以没有办法有效剔除噪声点,就会影响我们计算3D点的准确度。 在获取到点云数据后,我进行了滤波,然后将我认为没有异常的点拟合了一个平面,然后再去求我想要的某个point(x,y,z)到平面的距离,这就计算出了某个点相对于平面的距离,这也是项目中用来求高度比较通用的算法。

例如:噪声点剔除不完全,某些极大噪声点会拉斜拟合的平面。


原因分析:

出错原因:是因为我想剔除噪声点,但是很难找到能满足剔除所有噪声点的条件。
比如我设置了,高度剔除,像素剔除,但是这都不能满足噪声点剔除条件,并且噪声点是完全随机的,不可避免的。
从本质上,就不该采用剔除噪声点去拟合平面,这时我找到了RANSAC算法,可谓是完全避开噪声点,
此算法只用三个点去拟合平面,并且设置一个阈值距离,看看有多少个点可以满足这个距离,就记下这个number,然后可以迭代n次,这n次中,number最多的那次拟合出的平面,就可以保证是你最想要的平面。
由于只用了三个点来拟合平面,所有完全不担心噪声点来拉高平面。
活不多说,上代码。(c++)


解决方案:

RANSAC算法:
原理:---------------基于ransac算法平面检测:
1、确定迭代次数;
2、在迭代次数内:
2.1 随机选择三个点组成平面(判断三个点是否共线);
2.2 构造坐标矩阵;
2.3 求平面方程;
2.4 求所有点到平面的距离;
2.5 统计inlier个数(距离小于阈值);
3、迭代选择inlier个数最多的平面。

已知三个点坐标为P1(x1,y1,z1), P2(x2,y2,z2), P3(x3,y3,z3),求过他们的平面方程:
设方程为A(x - x1) + B(y - y1) + C(z - z1) = 0 (点法式) (也可设为过另外两个点),则有
A = (y3 - y1)(z3 - z1) - (z2 -z1)(y3 - y1);
B = (x3 - x1)(z2 - z1) - (x2 - x1)(z3 - z1);
C = (x2 - x1)(y3 - y1) - (x3 - x1)(y2 - y1);

//"ransac.h"
void ransac( std::vector<cv::Point3f>& pts_3d, int max_iter, float threshold);
//需要配置opencv,用到了opencv的Point3f
#include"ransac.h"
void ransac( std::vector<cv::Point3f>& pts_3d, int max_iter, float threshold)
{srand(time(0)); //随机种子int size_old = 3;double a, b, c, d; //平面法向量系数while (--max_iter) //设置循环的次数{vector<int> index;for (int k = 0; k < 3; ++k){index.push_back(rand() % pts_3d.size()); //随机选取三个点 }		auto idx = index.begin();double x1 = pts_3d.at(*idx).x, y1 = pts_3d.at(*idx).y, z1 = pts_3d.at(*idx).z; ++idx;double x2 = pts_3d.at(*idx).x, y2 = pts_3d.at(*idx).y, z2 = pts_3d.at(*idx).z; ++idx;double x3 =pts_3d.at(*idx).x, y3 = pts_3d.at(*idx).y, z3 = pts_3d.at(*idx).z; a = (y2 - y1)*(z3 - z1) - (z2 - z1)*(y3 - y1);b = (z2 - z1)*(x3 - x1) - (x2 - x1)*(z3 - z1);c = (x2 - x1)*(y3 - y1) - (y2 - y1)*(x3 - x1);d = -(a*x1 + b*y1 + c*z1);for (auto iter = pts_3d.begin(); iter != pts_3d.end(); ++iter){ double dis = fabs(a*iter->x + b*iter->y + c*iter->z + d) / sqrt(a*a + b*b + c*c);//点到平面的距离公式if (dis < threshold)	index.push_back(iter - pts_3d.begin());}//更新集合if (index.size() > size_old){size_old = index.size();}index.clear();}cout << a << " " << b << " " << c << " " << d << endl;	
}

附上一张图片看看效果,
绿色线:RANSA拟合结果;红色线:最小二乘法拟合结果;蓝色线:期望的理想结果绿色线:RANSA拟合结果;红色线:最小二乘法拟合结果;蓝色线:期望的理想结果
图片转载自:https://blog.csdn.net/leonardohaig/article/details/104570965?ops_request_misc=%257B%2522request%255Fid%2522%253A%2522163089018316780255218394%2522%252C%2522scm%2522%253A%252220140713.130102334.pc%255Fall.%2522%257D&request_id=163089018316780255218394&biz_id=0&utm_medium=distribute.pc_search_result.none-task-blog-2allfirst_rank_ecpm_v1~rank_v29-10-104570965.pc_search_ecpm_flag&utm_term=ransac%E7%AE%97%E6%B3%95%E6%8B%9F%E5%90%88%E5%B9%B3%E9%9D%A2&spm=1018.2226.3001.4187
代码参考:https://blog.csdn.net/taifyang/article/details/117636554?ops_request_misc=%257B%2522request%255Fid%2522%253A%2522163089058616780274150003%2522%252C%2522scm%2522%253A%252220140713.130102334.pc%255Fall.%2522%257D&request_id=163089058616780274150003&biz_id=0&utm_medium=distribute.pc_search_result.none-task-blog-2allfirst_rank_ecpm_v1~rank_v29-6-117636554.pc_search_ecpm_flag&utm_term=Ransac%E6%8B%9F%E5%90%88%E5%B9%B3%E9%9D%A2&spm=1018.2226.3001.4187

这篇关于RANSAC算法拟合平面实现(附代码c++)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/494321

相关文章

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

hdu1043(八数码问题,广搜 + hash(实现状态压缩) )

利用康拓展开将一个排列映射成一个自然数,然后就变成了普通的广搜题。 #include<iostream>#include<algorithm>#include<string>#include<stack>#include<queue>#include<map>#include<stdio.h>#include<stdlib.h>#include<ctype.h>#inclu

康拓展开(hash算法中会用到)

康拓展开是一个全排列到一个自然数的双射(也就是某个全排列与某个自然数一一对应) 公式: X=a[n]*(n-1)!+a[n-1]*(n-2)!+...+a[i]*(i-1)!+...+a[1]*0! 其中,a[i]为整数,并且0<=a[i]<i,1<=i<=n。(a[i]在不同应用中的含义不同); 典型应用: 计算当前排列在所有由小到大全排列中的顺序,也就是说求当前排列是第

【C++ Primer Plus习题】13.4

大家好,这里是国中之林! ❥前些天发现了一个巨牛的人工智能学习网站,通俗易懂,风趣幽默,忍不住分享一下给大家。点击跳转到网站。有兴趣的可以点点进去看看← 问题: 解答: main.cpp #include <iostream>#include "port.h"int main() {Port p1;Port p2("Abc", "Bcc", 30);std::cout <<

csu 1446 Problem J Modified LCS (扩展欧几里得算法的简单应用)

这是一道扩展欧几里得算法的简单应用题,这题是在湖南多校训练赛中队友ac的一道题,在比赛之后请教了队友,然后自己把它a掉 这也是自己独自做扩展欧几里得算法的题目 题意:把题意转变下就变成了:求d1*x - d2*y = f2 - f1的解,很明显用exgcd来解 下面介绍一下exgcd的一些知识点:求ax + by = c的解 一、首先求ax + by = gcd(a,b)的解 这个

C++包装器

包装器 在 C++ 中,“包装器”通常指的是一种设计模式或编程技巧,用于封装其他代码或对象,使其更易于使用、管理或扩展。包装器的概念在编程中非常普遍,可以用于函数、类、库等多个方面。下面是几个常见的 “包装器” 类型: 1. 函数包装器 函数包装器用于封装一个或多个函数,使其接口更统一或更便于调用。例如,std::function 是一个通用的函数包装器,它可以存储任意可调用对象(函数、函数

综合安防管理平台LntonAIServer视频监控汇聚抖动检测算法优势

LntonAIServer视频质量诊断功能中的抖动检测是一个专门针对视频稳定性进行分析的功能。抖动通常是指视频帧之间的不必要运动,这种运动可能是由于摄像机的移动、传输中的错误或编解码问题导致的。抖动检测对于确保视频内容的平滑性和观看体验至关重要。 优势 1. 提高图像质量 - 清晰度提升:减少抖动,提高图像的清晰度和细节表现力,使得监控画面更加真实可信。 - 细节增强:在低光条件下,抖

C++11第三弹:lambda表达式 | 新的类功能 | 模板的可变参数

🌈个人主页: 南桥几晴秋 🌈C++专栏: 南桥谈C++ 🌈C语言专栏: C语言学习系列 🌈Linux学习专栏: 南桥谈Linux 🌈数据结构学习专栏: 数据结构杂谈 🌈数据库学习专栏: 南桥谈MySQL 🌈Qt学习专栏: 南桥谈Qt 🌈菜鸡代码练习: 练习随想记录 🌈git学习: 南桥谈Git 🌈🌈🌈🌈🌈🌈🌈🌈🌈🌈🌈🌈🌈�

【数据结构】——原来排序算法搞懂这些就行,轻松拿捏

前言:快速排序的实现最重要的是找基准值,下面让我们来了解如何实现找基准值 基准值的注释:在快排的过程中,每一次我们要取一个元素作为枢纽值,以这个数字来将序列划分为两部分。 在此我们采用三数取中法,也就是取左端、中间、右端三个数,然后进行排序,将中间数作为枢纽值。 快速排序实现主框架: //快速排序 void QuickSort(int* arr, int left, int rig

【C++】_list常用方法解析及模拟实现

相信自己的力量,只要对自己始终保持信心,尽自己最大努力去完成任何事,就算事情最终结果是失败了,努力了也不留遗憾。💓💓💓 目录   ✨说在前面 🍋知识点一:什么是list? •🌰1.list的定义 •🌰2.list的基本特性 •🌰3.常用接口介绍 🍋知识点二:list常用接口 •🌰1.默认成员函数 🔥构造函数(⭐) 🔥析构函数 •🌰2.list对象