Dialogue Transformers:如何解决医学大模型【偏离主诉和没抓住核心】,建立抗干扰的能力,使得发现用户问题会一追到底?

本文主要是介绍Dialogue Transformers:如何解决医学大模型【偏离主诉和没抓住核心】,建立抗干扰的能力,使得发现用户问题会一追到底?,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Dialogue Transformers:实现抗干扰能力的对话模型

    • 抗干扰能力
    • 基于 Transformer 的实现技术
    • 优化目标

 


抗干扰能力

前置知识:从【注意力机制】开始,到【Transformer】的零基础【大模型】系列

Dialogue Transformers 论文地址:https://arxiv.org/pdf/1910.00486.pdf

医学大模型的一个问题:偏离主诉和没抓住核心,顶级医生发现用户问题会一追到底,而不是跟随用户关注无关内容,单纯理解对几句话是毫无意义。

论文中的一段话:

  • BOT:您的总额是15.50美元——我要从您上次用的那张卡上扣钱吗?
  • 用户:我收到退款后,我的账户上还有存款吗?
  • BOT:是的,您的账户有10美元。
  • 用户:好的,很好。
  • BOT:我可以下订单吗?(普通的对话系统,ta不会要催用户下单,这个跟人一样)
  • 用户:是的。
  • 机器人:完成。你明天应该能拿到你的东西。

第一行系统的回复是:“您的总额是15.50美元——我要从您上次用的那张卡上扣钱吗?”。

而用户在第二行提出的问题是:“我收到退款后,我的账户上还有存款吗?”这两句话之间的相关性并不明显。

系统给出了【我可以下订单吗?】,而这个回复同第一行内容高度相关,重新回到了之前的对话上下文里的核心问题。

基于 Transformer 的实现技术

论文证明了,Transformer架构比 循环神经网络RNN 模型,更适合于多轮对话的抗干扰能力。

3 种技术实现方案:

  1. 对话栈:将对话视为一个堆栈,按照后进先出的方式进行操作。然而,这种技术的缺点是一旦子对话完成并从栈中移除,就无法回到原来的子对话。因此,无法灵活地处理干扰和回到之前的对话上下文。

  2. RNN网络:核心思想是当前状态包含过去的信息。然而,在实际业务对话中,很难获得足够的训练数据来满足RNN的训练需求,导致训练结果不确定性较高。此外,RNN默认使用整个输入进行编码,如果前面的输出有偏差,会导致后续训练结果偏离目标。

  3. Transformers:Transformer相比于前两种技术,在处理意外输入内容时具有更强的抗干扰性。Transformer利用自注意力机制预先选择哪些tokens对当前状态有影响,忽略对当前状态无意义的其他tokens。ta能够独立地进行每一步的预测,并在发现无关输入时保持对话的连贯性。相比之下,使用RNN的REDP机制复制对话历史信息来回到正轨,但相对于Transformer,REDP的网络结构更复杂且泛化能力较差。

对于开放领域的对话,Transformer可以将对话上下文和领域背景知识合并,用于处理开放领域的对话任务。

可以使用 retrieve 模式或通用模式来实现,retrieve 模式使用两层 Transformer 进行相似度对比和回复编码,通用模式则将 Transformer 用作解码器逐个生成回复的 token。

总之,相对于 对话栈 和 RNN 网络,Transformer 在处理对话中的干扰和回到原对话上下文方面,具有更好的性能和灵活性。

优化目标

在Transformer的对话机制中,会将对话状态和每个系统行为进行编码,并在训练时最大化ta们之间的相似度。

  • 对当前用户输入的信息 User Intent Entities、系统 BOT 给予的信息、历史信息 Previous System Action 进行编码,形成一个嵌入层 embedding layer。
  • 再将 嵌入层里的隐藏状态 与每个系统行为 System Action 生成的向量,形成另一个嵌入层,进行相似度比较,以选择相似度 Similarity 排名最高的系统行为。

在这个过程中,采用了单向注意力机制,目的是让 Transformer 无法看到接下来的内容,需要将其遮住。

在端到端的 TED(Transformer Encoder Decoder)策略中,仍然采用 retrieve 模式,不会生成新的响应。

  • Retrieve模式是从预定义的候选回复集合中选择最合适的回复。在这种模式下,系统不会生成新的响应,而是从候选回复集合中检索出一个最相关的回复作为系统的回应。

  • 基于检索或排序的方法来选择最合适的回复。计算对话历史和每个候选回复之间的相似度或相关性来实现。常见的方法是使用基于词向量或句向量的相似度计算方法,如余弦相似度或点积相似度。

用户和系统的对话被编码成 “bag-of-words” 的向量。

  • 用户:[我, 想, 预订, 一张, 机票, 去, 纽约]
  • 每个句子被转换成了一个向量,表示句子中出现的单词及其频率。

在每一轮对话中,Transformer 动态地使用自注意力机制来访问对话历史信息的不同部分。

  • 如果认为 “预订” 和 “机票” 这两个单词对于生成回复很重要,那ta会分配更高的注意力权重给这两个单词,从而更关注这部分信息。

Transformer 的对话机制通过编码对话状态和系统行为,并使用自注意力机制来进行相似度比较,以选择最合适的系统行为。

这种方法能够动态地利用对话历史信息,并在训练过程中最大化状态和行为之间的相似度。

损失函数:

把输入向量和系统行为向量,放在同一个网络里进行训练,通过 Loss 进行反向传播。

损失度的计算公式, S+ 代表正样本的损失度,S- 代表负样本的损失度。

  • 正样本表示属于目标类别的样本(订机票、天气,相关的信息)
  • 负样本表示不属于目标类别的样本(有什么好的零食,无关的信息)

这个公式核心就是,最大化正样本,最小化负样本。

这篇关于Dialogue Transformers:如何解决医学大模型【偏离主诉和没抓住核心】,建立抗干扰的能力,使得发现用户问题会一追到底?的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/492991

相关文章

Pyserial设置缓冲区大小失败的问题解决

《Pyserial设置缓冲区大小失败的问题解决》本文主要介绍了Pyserial设置缓冲区大小失败的问题解决,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面... 目录问题描述原因分析解决方案问题描述使用set_buffer_size()设置缓冲区大小后,buf

PyInstaller打包selenium-wire过程中常见问题和解决指南

《PyInstaller打包selenium-wire过程中常见问题和解决指南》常用的打包工具PyInstaller能将Python项目打包成单个可执行文件,但也会因为兼容性问题和路径管理而出现各种运... 目录前言1. 背景2. 可能遇到的问题概述3. PyInstaller 打包步骤及参数配置4. 依赖

resultMap如何处理复杂映射问题

《resultMap如何处理复杂映射问题》:本文主要介绍resultMap如何处理复杂映射问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录resultMap复杂映射问题Ⅰ 多对一查询:学生——老师Ⅱ 一对多查询:老师——学生总结resultMap复杂映射问题

解决SpringBoot启动报错:Failed to load property source from location 'classpath:/application.yml'

《解决SpringBoot启动报错:Failedtoloadpropertysourcefromlocationclasspath:/application.yml问题》这篇文章主要介绍... 目录在启动SpringBoot项目时报如下错误原因可能是1.yml中语法错误2.yml文件格式是GBK总结在启动S

java实现延迟/超时/定时问题

《java实现延迟/超时/定时问题》:本文主要介绍java实现延迟/超时/定时问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录Java实现延迟/超时/定时java 每间隔5秒执行一次,一共执行5次然后结束scheduleAtFixedRate 和 schedu

idea maven编译报错Java heap space的解决方法

《ideamaven编译报错Javaheapspace的解决方法》这篇文章主要为大家详细介绍了ideamaven编译报错Javaheapspace的相关解决方法,文中的示例代码讲解详细,感兴趣的... 目录1.增加 Maven 编译的堆内存2. 增加 IntelliJ IDEA 的堆内存3. 优化 Mave

如何解决mmcv无法安装或安装之后报错问题

《如何解决mmcv无法安装或安装之后报错问题》:本文主要介绍如何解决mmcv无法安装或安装之后报错问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录mmcv无法安装或安装之后报错问题1.当我们运行YOwww.chinasem.cnLO时遇到2.找到下图所示这里3.

浅谈配置MMCV环境,解决报错,版本不匹配问题

《浅谈配置MMCV环境,解决报错,版本不匹配问题》:本文主要介绍浅谈配置MMCV环境,解决报错,版本不匹配问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录配置MMCV环境,解决报错,版本不匹配错误示例正确示例总结配置MMCV环境,解决报错,版本不匹配在col

Vue3使用router,params传参为空问题

《Vue3使用router,params传参为空问题》:本文主要介绍Vue3使用router,params传参为空问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐... 目录vue3使用China编程router,params传参为空1.使用query方式传参2.使用 Histo

Spring Security基于数据库的ABAC属性权限模型实战开发教程

《SpringSecurity基于数据库的ABAC属性权限模型实战开发教程》:本文主要介绍SpringSecurity基于数据库的ABAC属性权限模型实战开发教程,本文给大家介绍的非常详细,对大... 目录1. 前言2. 权限决策依据RBACABAC综合对比3. 数据库表结构说明4. 实战开始5. MyBA