记录一次chatGPT人机协同实战辅助科研——根据词库自动进行情感分析

本文主要是介绍记录一次chatGPT人机协同实战辅助科研——根据词库自动进行情感分析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

有一个Excel中的一列,读取文本判断文本包含积极情感词.txt和消极情感词.txt的个数,分别生成两列统计数据

请将 ‘your_file.xlsx’ 替换为你的Excel文件名,'Your Text Column’替换为包含文本的列名。

这个程序首先读取了积极和消极情感词,并定义了两个函数来统计文本中这些词的数量。然后,它使用这两个函数来创建新的列,并将结果保存为一个新的Excel文件。

# -*- coding:utf-8 -*-f
import pandas as pd# 读入数据# 读取Excel文件
file_path = 'chatGPT_analyse_result.xlsx'
df = pd.read_excel(file_path)# 定义函数来统计文本中出现的词汇数
def count_words(text, word_list):count = 0for word in word_list:if word in text:count += 1return count# 读取积极和消极情绪词文件
positive_words_path = '积极情绪词库.txt'  # 请替换为你的积极情绪词文件路径
negative_words_path = '消极情绪词库.txt'  # 请替换为你的消极情绪词文件路径# 读取积极和消极情绪词文件内容到列表中
with open(positive_words_path, 'r', encoding='utf-8') as file:positive_words = [line.strip() for line in file]with open(negative_words_path, 'r', encoding='utf-8') as file:negative_words = [line.strip() for line in file]# 对每一行文本进行积极和消极情绪词的统计
positive_counts = []
negative_counts = []for text in df['分析结果']:positive_count = count_words(str(text), positive_words)negative_count = count_words(str(text), negative_words)positive_counts.append(positive_count)negative_counts.append(negative_count)# 将统计结果添加到数据框中
df['积极情绪词个数'] = positive_counts
df['消极情绪词个数'] = negative_counts# 将结果保存到新的Excel文件中
output_file_path = '分析结果.xlsx'
df.to_excel(output_file_path, index=False)print("已生成带有情绪词统计的Excel文件。")

发现次数都是0

在这里插入图片描述

调整prompt

还是不匹配 ,接续追问

在这里插入图片描述

成功解决bug:出现了分析结果
在这里插入图片描述
最后代码:

# -*- coding:utf-8 -*-f
import pandas as pd
import jieba
# 读入数据# 读取Excel文件
file_path = 'chatGPT_analyse_result.xlsx'
df = pd.read_excel(file_path)# 情绪词列表
positive_words = ['透露', '亲切', '容忍', '听从', '被动', '创新', '发表', '好的', '鼓舞', '赋予', '喜欢', '配合', '聪明', '偏向', '交流', '合理', '猜测', '夸奖', '致力于', '称赞', '不错', '听懂', '安慰', '善于', '爱', '提升', '坚持', '看好', '指引', '劝慰', '舒缓', '减轻', '推导', '愉快', '轻松', '沟通', '有序', '进步', '谢谢', '强烈', '懂', '恰当', '持之以恒', '至关重要', '振奋', '赞成', '妥当', '礼貌', '温暖', '有利于']negative_words = ['批评', '不对', '抱歉', '薄弱', '不适', '不足', '谴责', '逼迫', '厌烦', '不行', '指责', '负面', '惩罚', '紧张', '责备', '告诫', '挫败', '气馁', '紧迫', '质疑', '不满', '贬低', '忽视', '批判', '疑惑', '反对', '不是', '失败', '催促', '担心', '无礼', '失去', '焦虑', '着急', '退步', '模糊', '放弃', '迷惘', '灰心丧气', '批判性', '禁止', '不当', '犯错', '忽略', '拒绝', '担忧', '不专业', '困难']# 分词函数
def tokenize(text):return jieba.lcut(text)# 对每一行文本进行分词和积极、消极情绪词的统计
positive_counts = []
negative_counts = []for text in df['分析结果']:words = tokenize(str(text))  # 分词positive_count = any(word in positive_words for word in words)negative_count = any(word in negative_words for word in words)positive_counts.append(1 if positive_count else 0)negative_counts.append(1 if negative_count else 0)# 将统计结果添加到数据框中
df['积极情绪词个数'] = positive_counts
df['消极情绪词个数'] = negative_counts# 将结果保存到新的Excel文件中
output_file_path = '分析结果.xlsx'
df.to_excel(output_file_path, index=False)print("已生成带有情绪词统计的Excel文件。")

最后在画个图

转换成分钟

在这里插入图片描述

import pandas as pd# 读取Excel文件
file_path = 'chatGPT_analyse_result.xlsx'  # 请替换为你的Excel文件路径
df = pd.read_excel(file_path)# 提取时间列中的分钟和秒钟数据
time_pattern = r'(\d+):(\d+)'
df['分钟'] = df['时间'].str.extract(time_pattern)[0].astype(int) * 60  # 提取分钟并转换为秒钟
df['秒钟'] = df['时间'].str.extract(time_pattern)[1].astype(int)# 计算总的秒钟数
df['总秒钟数'] = df['分钟'] + df['秒钟']# 将总秒钟数转换回分钟
df['总分钟数'] = df['总秒钟数'] / 60# 打印结果或保存到新的Excel文件中
print(df[['分钟', '秒钟', '总秒钟数', '总分钟数']])  # 打印结果
# 或者保存到新的Excel文件中
output_file_path = '处理后的结果.xlsx'df.to_excel(output_file_path, index=False)
print('ok')

在这里插入图片描述

在这里插入图片描述

import pandas as pd
import matplotlib.pyplot as plt
plt.rcParams['font.sans-serif']=['SimHei']
plt.rcParams['axes.unicode_minus']=False# 读取Excel文件
file_path = '分析结果.xlsx'  # 请替换为你的Excel文件路径
df = pd.read_excel(file_path)# 映射积极情绪词个数和消极情绪词个数到1和-1
df['积极情绪映射'] = df['积极情绪词个数'].apply(lambda x: 1)
df['消极情绪映射'] = df['消极情绪词个数'].apply(lambda x: -1)# 绘制折线图
plt.figure(figsize=(10, 6))  # 设置图形大小# 以总分钟数为 x 轴,积极情绪映射和消极情绪映射为 y 轴绘制折线图
plt.plot(df['总分钟数'], df['积极情绪映射'], label='积极情绪词个数', marker='o')  # marker='o' 表示使用圆点标记数据点
plt.plot(df['总分钟数'], df['消极情绪映射'], label='消极情绪词个数', marker='x')  # marker='x' 表示使用X标记数据点plt.xlabel('总分钟数')  # x 轴标签
plt.ylabel('情绪')  # y 轴标签
plt.title('课堂时间与情绪变化折线图')  # 图表标题plt.legend()  # 显示图例
plt.grid(True)  # 显示网格线plt.ylim(-1.5, 1.5)  # 设置 y 轴显示范围plt.tight_layout()  # 调整布局使标签等不会被裁剪
plt.show()  # 显示图形

结果如图:
在这里插入图片描述

这篇关于记录一次chatGPT人机协同实战辅助科研——根据词库自动进行情感分析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/488174

相关文章

Spring Boot Interceptor的原理、配置、顺序控制及与Filter的关键区别对比分析

《SpringBootInterceptor的原理、配置、顺序控制及与Filter的关键区别对比分析》本文主要介绍了SpringBoot中的拦截器(Interceptor)及其与过滤器(Filt... 目录前言一、核心功能二、拦截器的实现2.1 定义自定义拦截器2.2 注册拦截器三、多拦截器的执行顺序四、过

Python中4大日志记录库比较的终极PK

《Python中4大日志记录库比较的终极PK》日志记录框架是一种工具,可帮助您标准化应用程序中的日志记录过程,:本文主要介绍Python中4大日志记录库比较的相关资料,文中通过代码介绍的非常详细,... 目录一、logging库1、优点2、缺点二、LogAid库三、Loguru库四、Structlogphp

Java 队列Queue从原理到实战指南

《Java队列Queue从原理到实战指南》本文介绍了Java中队列(Queue)的底层实现、常见方法及其区别,通过LinkedList和ArrayDeque的实现,以及循环队列的概念,展示了如何高效... 目录一、队列的认识队列的底层与集合框架常见的队列方法插入元素方法对比(add和offer)移除元素方法

Spring Boot基于 JWT 优化 Spring Security 无状态登录实战指南

《SpringBoot基于JWT优化SpringSecurity无状态登录实战指南》本文介绍如何使用JWT优化SpringSecurity实现无状态登录,提高接口安全性,并通过实际操作步骤... 目录Spring Boot 实战:基于 JWT 优化 Spring Security 无状态登录一、先搞懂:为什

C++ scoped_ptr 和 unique_ptr对比分析

《C++scoped_ptr和unique_ptr对比分析》本文介绍了C++中的`scoped_ptr`和`unique_ptr`,详细比较了它们的特性、使用场景以及现代C++推荐的使用`uni... 目录1. scoped_ptr基本特性主要特点2. unique_ptr基本用法3. 主要区别对比4. u

C++11中的包装器实战案例

《C++11中的包装器实战案例》本文给大家介绍C++11中的包装器实战案例,本文结合实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录引言1.std::function1.1.什么是std::function1.2.核心用法1.2.1.包装普通函数1.2.

Nginx概念、架构、配置与虚拟主机实战操作指南

《Nginx概念、架构、配置与虚拟主机实战操作指南》Nginx是一个高性能的HTTP服务器、反向代理服务器、负载均衡器和IMAP/POP3/SMTP代理服务器,它支持高并发连接,资源占用低,功能全面且... 目录Nginx 深度解析:概念、架构、配置与虚拟主机实战一、Nginx 的概念二、Nginx 的特点

Spring IOC核心原理详解与运用实战教程

《SpringIOC核心原理详解与运用实战教程》本文详细解析了SpringIOC容器的核心原理,包括BeanFactory体系、依赖注入机制、循环依赖解决和三级缓存机制,同时,介绍了SpringBo... 目录1. Spring IOC核心原理深度解析1.1 BeanFactory体系与内部结构1.1.1

JAVA SpringBoot集成Jasypt进行加密、解密的详细过程

《JAVASpringBoot集成Jasypt进行加密、解密的详细过程》文章详细介绍了如何在SpringBoot项目中集成Jasypt进行加密和解密,包括Jasypt简介、如何添加依赖、配置加密密钥... 目录Java (SpringBoot) 集成 Jasypt 进行加密、解密 - 详细教程一、Jasyp

Redis 命令详解与实战案例

《Redis命令详解与实战案例》本文详细介绍了Redis的基础知识、核心数据结构与命令、高级功能与命令、最佳实践与性能优化,以及实战应用场景,通过实战案例,展示了如何使用Redis构建高性能应用系统... 目录Redis 命令详解与实战案例一、Redis 基础介绍二、Redis 核心数据结构与命令1. 字符