游艇租赁最小代价——动态规划求解

2023-12-13 08:50

本文主要是介绍游艇租赁最小代价——动态规划求解,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

问题:江上有6个游艇站,游客可以从任意一个站租赁游艇,并在其下游任意一个站归还游艇,不同站之间的费用不同。

游艇出租站i到j之间的租金为r(i,j)。上下游情况以及各站点之间的费用如下:

图片来源于陈小玉老师的《趣学算法》

思想:假设i到j经过在k停靠有最优情况,那么,原问题就分解为求解  i->k  子问题最优解与  k->j  子问题最优解的情况。

分析:

1.上述指出上游可以到下游中任意一个站规划游艇,那么,只能是序号低的站点到序号高的站点,所以,在租金矩阵中只会存在右三角的部分。

2.上述问题无外乎考虑的是直达还是经过中转然后到达目的站点。

注:我们需要进行以下推论,若存在1,2,3站点,1->3有两种情况,要么1->3,要么1->2->3,要是经过2站点中转,则1->3的花费最小,那么我们就知道了1->3的最佳策略是在2站点进行中转。

那么,继续,存在1,2,3,4站点,1->4的情况就更多了些,可以是1->4,也可以是1->2->4,或者是1->3->4,又或者是1->2->3->4这4中情况,有上述中的假设,1->3的最佳策略是在2站点进行中转,那么用于1->4策略中,1->2->3->4的情况一定优于1->3->4的情况。所以,这就引出了动态规划的核心要点,即原问题的最优解一定包含了子问题的最优解,即1->4(1->3->4)的最优解情况一定包含了1->3的最优解情况,那么,我们在开始要记录了子问题的最优解情况,后续则可以直接使用,

我们开始建立最优值的递归式:

已知我们的数据结构:m[i][j]的值表示两点之间的最短花费,s[i][j]的值表示两点之间的中转节点。

那么,若i==j,则m[i][j]==0;

若j==i+1,则m[i][j]==r[i][j],即m[i][j]表示两点间的直达代价,那么s[i][j]==0,因为s[i][j]表示两者间的中转点,而两点为直达,所以没有中转点;

若j>i+1,即两点间存在一个或者一个以上的中转点时,m[i][j]==min{m[i][k]+m[k][j],r[i][j]}

核心思想:假设i到j经过在k停靠有最优情况,那么,原问题就分解为求解  i->k  子问题最优解与  k->j  子问题最优解的情况,逐渐往下找出最小规模子问题的情况。

同时还需要注意一点就是,我们必须求出规模最小时的最优值,然后才能递推出规模较大时的最优值。而规模最小时为两个相邻点的情况,接着三个点,四个点......

但是我们知道i->k的代价,k->j的代价都是最小的(子问题最优用于母问题最优)

而事实上,i->k的最优情况在分析i->j之前我们已经得到,我们直接用就可以,没必要再重新分析。就是比如先以三个点为例,结果1->3的代价中,路径1->2->3的代价是低于路径1->3代价的,那么,我们就会在选择中记录要是有结果1->3的情况,我们就默认选择路径1->2->3。

同理在1->4的结果中,我们会尝试路径1->4,1->2->4,1->2->3->4而不会去尝试1->3->4。而在计算经过节点3进行中转的情况时,我们只需要关注的是3->4之间的代价,而结果1->3的代价已经由路径1->2->3求得。

所以,最后,若假设结果1->4的最佳路径是1->2->3->4,我们只需要知道4的前一节点是3,而不关心3的前一节点是谁,而到了3节点,我们才能发现其前一节点还需要经过2。

 

接下来进行代码分析:

初始化,我们让m[i][j]=r[i][j],s[i][j]=0,即将直达情况进行了第一遍记录,后续的比较就是逐次增加中转站点的个数,不断进行比较是经过中转后的代价最优还是直达最优,从而对代价表与中转表进行更新。

 

接下来,分析超过2个节点的情况,我们加入某个点作为两点间的中转点,看加入后代价是否优于之前,若代价优于直达,更新代价表,并将中转节点编号赋值给r[i][j]。

接下来上代码:

代码主要在函数printShortValue()较难理解,其实就是我们要从最小规模入手。

 

#include <iostream>
using namespace std;
const int N = 1024;
int r[N][N],m[N][N],s[N][N];
int n;
int b, t;
void initArray()    //初始化数组
{for(int i = 1; i <= n; i++){for(int j = i+1; j <= n; j++){m[i][j] = r[i][j];r[i][j] = 0;}}
}void calShortValue()    //计算数组中的最优代价情况
{for(int num = 3; num <= n; num++){  //num站点的长度,由小到大更新,则长度大的情况可以使用长度小的情况for(int i = 1; i <= n-num+1; i++){int j = i+num-1;for(int k = i+1; k < j; k++){if(m[i][k] + m[k][j] < m[i][j]){m[i][j] = m[i][k] + m[k][j];s[i][j] = k;}}}}
}void printShortValue()  //打印数组中最优代价情况
{for(int i = 1; i <= n; i++){for(int j = 1; j <= n; j++){if(j <= i){cout << " ";}else{cout << s[i][j];}cout << " ";}cout << "\n";}
}void printShortPath(int b, int t)
{if(s[b][t]==0){cout << "---" << t;return;}printShortPath(b,s[b][t]);printShortPath(s[b][t],t);
}int main()
{cout << "请输入站点个数:" << endl;cin >> n;cout << "请以此输入各站点间的代价:" << endl;for(int i = 1; i <= n; i++){for(int j = i+1; j <= n; j++){cin >> r[i][j];}}cout << "请输入源站点与目的站点:";cin >> b >> t;initArray();calShortValue();printShortValue();cout << "两点间的最小代价为:" << m[b][t] <<endl;cout << "两点间经过:" << b;printShortPath(b,t);
}

 

转载于:https://www.cnblogs.com/chenleideblog/p/10470326.html

这篇关于游艇租赁最小代价——动态规划求解的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/487840

相关文章

SpringBoot实现动态插拔的AOP的完整案例

《SpringBoot实现动态插拔的AOP的完整案例》在现代软件开发中,面向切面编程(AOP)是一种非常重要的技术,能够有效实现日志记录、安全控制、性能监控等横切关注点的分离,在传统的AOP实现中,切... 目录引言一、AOP 概述1.1 什么是 AOP1.2 AOP 的典型应用场景1.3 为什么需要动态插

numpy求解线性代数相关问题

《numpy求解线性代数相关问题》本文主要介绍了numpy求解线性代数相关问题,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 在numpy中有numpy.array类型和numpy.mat类型,前者是数组类型,后者是矩阵类型。数组

VUE动态绑定class类的三种常用方式及适用场景详解

《VUE动态绑定class类的三种常用方式及适用场景详解》文章介绍了在实际开发中动态绑定class的三种常见情况及其解决方案,包括根据不同的返回值渲染不同的class样式、给模块添加基础样式以及根据设... 目录前言1.动态选择class样式(对象添加:情景一)2.动态添加一个class样式(字符串添加:情

SpringCloud配置动态更新原理解析

《SpringCloud配置动态更新原理解析》在微服务架构的浩瀚星海中,服务配置的动态更新如同魔法一般,能够让应用在不重启的情况下,实时响应配置的变更,SpringCloud作为微服务架构中的佼佼者,... 目录一、SpringBoot、Cloud配置的读取二、SpringCloud配置动态刷新三、更新@R

如何用Python绘制简易动态圣诞树

《如何用Python绘制简易动态圣诞树》这篇文章主要给大家介绍了关于如何用Python绘制简易动态圣诞树,文中讲解了如何通过编写代码来实现特定的效果,包括代码的编写技巧和效果的展示,需要的朋友可以参考... 目录代码:效果:总结 代码:import randomimport timefrom math

Java中JSON字符串反序列化(动态泛型)

《Java中JSON字符串反序列化(动态泛型)》文章讨论了在定时任务中使用反射调用目标对象时处理动态参数的问题,通过将方法参数存储为JSON字符串并进行反序列化,可以实现动态调用,然而,这种方式容易导... 需求:定时任务扫描,反射调用目标对象,但是,方法的传参不是固定的。方案一:将方法参数存成jsON字

.NET利用C#字节流动态操作Excel文件

《.NET利用C#字节流动态操作Excel文件》在.NET开发中,通过字节流动态操作Excel文件提供了一种高效且灵活的方式处理数据,本文将演示如何在.NET平台使用C#通过字节流创建,读取,编辑及保... 目录用C#创建并保存Excel工作簿为字节流用C#通过字节流直接读取Excel文件数据用C#通过字节

第10章 中断和动态时钟显示

第10章 中断和动态时钟显示 从本章开始,按照书籍的划分,第10章开始就进入保护模式(Protected Mode)部分了,感觉从这里开始难度突然就增加了。 书中介绍了为什么有中断(Interrupt)的设计,中断的几种方式:外部硬件中断、内部中断和软中断。通过中断做了一个会走的时钟和屏幕上输入字符的程序。 我自己理解中断的一些作用: 为了更好的利用处理器的性能。协同快速和慢速设备一起工作

动态规划---打家劫舍

题目: 你是一个专业的小偷,计划偷窃沿街的房屋。每间房内都藏有一定的现金,影响你偷窃的唯一制约因素就是相邻的房屋装有相互连通的防盗系统,如果两间相邻的房屋在同一晚上被小偷闯入,系统会自动报警。 给定一个代表每个房屋存放金额的非负整数数组,计算你 不触动警报装置的情况下 ,一夜之内能够偷窃到的最高金额。 思路: 动态规划五部曲: 1.确定dp数组及含义 dp数组是一维数组,dp[i]代表

poj 1258 Agri-Net(最小生成树模板代码)

感觉用这题来当模板更适合。 题意就是给你邻接矩阵求最小生成树啦。~ prim代码:效率很高。172k...0ms。 #include<stdio.h>#include<algorithm>using namespace std;const int MaxN = 101;const int INF = 0x3f3f3f3f;int g[MaxN][MaxN];int n