DWA(dynamic window approach)算法学习

2023-12-13 08:04

本文主要是介绍DWA(dynamic window approach)算法学习,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

系列文章目录

A*算法学习-CSDN博客

弗洛伊德算法(Floyd)和路径平滑弗洛伊德算法(Smooth Floyd)学习-CSDN博客

D*算法学习-CSDN博客


目录

系列文章目录

前言

搜索空间 —减小速度搜索空间

优化过程 —最大化目标函数

算法实现

总结


前言

在机器人的路径规划中少不了DWA算法,学习!!!

DWA动态窗口法的原理及应用:The Dynamic Window Approach to Collision Avoidance - 知乎 (zhihu.com)

自动驾驶决策规划算法—DWA 动态窗口法 - 知乎 (zhihu.com) 


动态窗口法(Dynamic Window Approach, DWA)是一种避障规划方法,DWA算法通过对速度空间施加约束以确保动力学模型和避障的要求,在速度空间中搜索机器人最优控制速度,最终实现快速安全地到达目的地。

DWA算法的实现主要由两部分组成: 1.减小速度空间2.定义目标函数,并最大化目标函数

搜索空间 —减小速度搜索空间

通过施加弧线轨迹、允许速度、滑动窗口约束以减小搜索空间。

  • 弧线轨迹 Circular trajectories
    在原论文中,作者对简化了机器人的运动学模型,并得出了机器人运动轨迹可由一系列弧线和直线组成。所以,作者将速度空间约束在由机器人的平移速度和旋转速度(v,w)组成的二维速度搜索空间。

  • 允许速度 Admissible velocities
    允许速度(Admissible velocities)确保机器人可以在障碍前停下,最大的允许速度取决于当前轨迹距最近障碍的距离dist(v,w)。允许速度集被定义为:

    下图中展示了Vs,Va速度空间:

  • 滑动窗口 Dynamic window
    考虑到机器人存在加速度限制,搜索空间被限定动态窗口Vd中(在下一个规划间隔可达到的速度),具体如下:

    其中,v˙,w˙表示机器人的加速度。
    最终的搜索空间:Vr=Vs∩Va∩Vd,如下图所示:

优化过程 —最大化目标函数

目标函数考虑了方位角、安全距离和速度:

  • 方位角 Target heading
    方位角项heading(v,w)可确保机器人在运动过程中快速对准目标点。
  • 安全距离 Clearance
    dist(v,w)确保机器人不发生任何碰撞
  • 速度 Velocity
    速度项Velocity(v,w)可确保机器人尽快到达目标点

目标函数被定义为:

其中,\alpha , \beta , \gamma  可以根据需求调整。这三个指标是目标函数的重要组成部分,缺一不可。仅使clearance和velocity最大化,机器人始终在无障碍空间运动,但不会有向目标位置移动的趋势。单独最大化heading,机器人很快就会被阻碍其前进的第一个障碍所阻挡,无法在其周围移动。通过组合三个指标,机器人在上述限制条件下能够快速地绕过碰撞,同时朝着目标方向运动。

算法实现

具体的DWA算法参考:https://github.com/AtsushiSakai/PythonRoboticsGifsplanning

函数讲解

  • 动态窗口
    创建动态窗口

    def calc_dynamic_window(x, config):"""calculation dynamic window based on current state x"""# Dynamic window from robot specificationVs = [config.min_speed, config.max_speed,-config.max_yaw_rate, config.max_yaw_rate]# Dynamic window from motion modelVd = [x[3] - config.max_accel * config.dt,x[3] + config.max_accel * config.dt,x[4] - config.max_delta_yaw_rate * config.dt,x[4] + config.max_delta_yaw_rate * config.dt]#  [v_min, v_max, yaw_rate_min, yaw_rate_max]dw = [max(Vs[0], Vd[0]), min(Vs[1], Vd[1]),max(Vs[2], Vd[2]), min(Vs[3], Vd[3])]return dw
    
  • 计算动态窗口内最优速度和最优轨迹

    • 在动态窗口dw中采样并计算可能的轨迹,并求解各条轨迹的目标函数
    • 选取令目标函数最小化(最小化指标,即对每个指标取倒数)的轨迹作为最优轨迹
    def calc_control_and_trajectory(x, dw, config, goal, ob):"""calculation final input with dynamic window"""x_init = x[:]min_cost = float("inf")best_u = [0.0, 0.0]best_trajectory = np.array([x])# evaluate all trajectory with sampled input in dynamic windowfor v in np.arange(dw[0], dw[1], config.v_resolution):# v_resolution: speed intervalfor y in np.arange(dw[2], dw[3], config.yaw_rate_resolution):# yaw_rate_resolution: yaw_rate intervaltrajectory = predict_trajectory(x_init, v, y, config)# calc costto_goal_cost = config.to_goal_cost_gain * calc_to_goal_cost(trajectory, goal)speed_cost = config.speed_cost_gain * (config.max_speed - trajectory[-1, 3])ob_cost = config.obstacle_cost_gain * calc_obstacle_cost(trajectory, ob, config)final_cost = to_goal_cost + speed_cost + ob_cost# search minimum trajectoryif min_cost >= final_cost:min_cost = final_costbest_u = [v, y]best_trajectory = trajectoryif abs(best_u[0]) < config.robot_stuck_flag_cons \and abs(x[3]) < config.robot_stuck_flag_cons:# to ensure the robot do not get stuck in# best v=0 m/s (in front of an obstacle) and# best omega=0 rad/s (heading to the goal with# angle difference of 0)best_u[1] = -config.max_delta_yaw_ratereturn best_u, best_trajectory
    
  • 目标函数

    • 方位角目标函数
    def calc_to_goal_cost(trajectory, goal):"""calc to goal cost with angle difference"""dx = goal[0] - trajectory[-1, 0]dy = goal[1] - trajectory[-1, 1]error_angle = math.atan2(dy, dx)cost_angle = error_angle - trajectory[-1, 2]cost = abs(math.atan2(math.sin(cost_angle), math.cos(cost_angle)))return cost
    
    • 障碍目标函数
      计算机器人与最近障碍的距离
    def calc_obstacle_cost(trajectory, ob, config):"""calc obstacle cost inf: collision"""ox = ob[:, 0]oy = ob[:, 1]dx = trajectory[:, 0] - ox[:, None]dy = trajectory[:, 1] - oy[:, None]# r = sqrt(dx^2 + dy^2)r = np.hypot(dx, dy)if config.robot_type == RobotType.rectangle:yaw = trajectory[:, 2]rot = np.array([[np.cos(yaw), -np.sin(yaw)], [np.sin(yaw), np.cos(yaw)]])rot = np.transpose(rot, [2, 0, 1])local_ob = ob[:, None] - trajectory[:, 0:2]local_ob = local_ob.reshape(-1, local_ob.shape[-1])local_ob = np.array([local_ob @ x for x in rot])local_ob = local_ob.reshape(-1, local_ob.shape[-1])upper_check = local_ob[:, 0] <= config.robot_length / 2right_check = local_ob[:, 1] <= config.robot_width / 2bottom_check = local_ob[:, 0] >= -config.robot_length / 2left_check = local_ob[:, 1] >= -config.robot_width / 2if (np.logical_and(np.logical_and(upper_check, right_check),np.logical_and(bottom_check, left_check))).any():return float("Inf")elif config.robot_type == RobotType.circle:if np.array(r <= config.robot_radius).any():return float("Inf")min_r = np.min(r)return 1.0 / min_r  # OK
    

    最终机器人规划避障轨迹:


总结

机器人轨迹规划的基本算法,之后做实验跑一跑!!!之后还要研究下欧几里得距离转换算法(Euclidean Distance Transform, EDT),建立EDT梯度图衡量障碍物代价以优化障碍物判断优化。

这篇关于DWA(dynamic window approach)算法学习的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/487695

相关文章

SpringBoot实现MD5加盐算法的示例代码

《SpringBoot实现MD5加盐算法的示例代码》加盐算法是一种用于增强密码安全性的技术,本文主要介绍了SpringBoot实现MD5加盐算法的示例代码,文中通过示例代码介绍的非常详细,对大家的学习... 目录一、什么是加盐算法二、如何实现加盐算法2.1 加盐算法代码实现2.2 注册页面中进行密码加盐2.

Java时间轮调度算法的代码实现

《Java时间轮调度算法的代码实现》时间轮是一种高效的定时调度算法,主要用于管理延时任务或周期性任务,它通过一个环形数组(时间轮)和指针来实现,将大量定时任务分摊到固定的时间槽中,极大地降低了时间复杂... 目录1、简述2、时间轮的原理3. 时间轮的实现步骤3.1 定义时间槽3.2 定义时间轮3.3 使用时

如何使用Python实现一个简单的window任务管理器

《如何使用Python实现一个简单的window任务管理器》这篇文章主要为大家详细介绍了如何使用Python实现一个简单的window任务管理器,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起... 任务管理器效果图完整代码import tkinter as tkfrom tkinter i

SpringBoot利用dynamic-datasource-spring-boot-starter解决多数据源问题

《SpringBoot利用dynamic-datasource-spring-boot-starter解决多数据源问题》dynamic-datasource-spring-boot-starter是一... 目录概要整体架构构想操作步骤创建数据源切换数据源后续问题小结概要自己闲暇时间想实现一个多租户平台,

Java进阶学习之如何开启远程调式

《Java进阶学习之如何开启远程调式》Java开发中的远程调试是一项至关重要的技能,特别是在处理生产环境的问题或者协作开发时,:本文主要介绍Java进阶学习之如何开启远程调式的相关资料,需要的朋友... 目录概述Java远程调试的开启与底层原理开启Java远程调试底层原理JVM参数总结&nbsMbKKXJx

如何通过Golang的container/list实现LRU缓存算法

《如何通过Golang的container/list实现LRU缓存算法》文章介绍了Go语言中container/list包实现的双向链表,并探讨了如何使用链表实现LRU缓存,LRU缓存通过维护一个双向... 目录力扣:146. LRU 缓存主要结构 List 和 Element常用方法1. 初始化链表2.

golang字符串匹配算法解读

《golang字符串匹配算法解读》文章介绍了字符串匹配算法的原理,特别是Knuth-Morris-Pratt(KMP)算法,该算法通过构建模式串的前缀表来减少匹配时的不必要的字符比较,从而提高效率,在... 目录简介KMP实现代码总结简介字符串匹配算法主要用于在一个较长的文本串中查找一个较短的字符串(称为

通俗易懂的Java常见限流算法具体实现

《通俗易懂的Java常见限流算法具体实现》:本文主要介绍Java常见限流算法具体实现的相关资料,包括漏桶算法、令牌桶算法、Nginx限流和Redis+Lua限流的实现原理和具体步骤,并比较了它们的... 目录一、漏桶算法1.漏桶算法的思想和原理2.具体实现二、令牌桶算法1.令牌桶算法流程:2.具体实现2.1

Java深度学习库DJL实现Python的NumPy方式

《Java深度学习库DJL实现Python的NumPy方式》本文介绍了DJL库的背景和基本功能,包括NDArray的创建、数学运算、数据获取和设置等,同时,还展示了如何使用NDArray进行数据预处理... 目录1 NDArray 的背景介绍1.1 架构2 JavaDJL使用2.1 安装DJL2.2 基本操

Window Server创建2台服务器的故障转移群集的图文教程

《WindowServer创建2台服务器的故障转移群集的图文教程》本文主要介绍了在WindowsServer系统上创建一个包含两台成员服务器的故障转移群集,文中通过图文示例介绍的非常详细,对大家的... 目录一、 准备条件二、在ServerB安装故障转移群集三、在ServerC安装故障转移群集,操作与Ser