cv.goodFeaturesToTrack:Shi-Tomasi角点检测-OpenCV-python

2023-12-12 04:50

本文主要是介绍cv.goodFeaturesToTrack:Shi-Tomasi角点检测-OpenCV-python,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

回顾Harris角点检测:

Harris角点检测-OpenCV_独憩的博客-CSDN博客

Shi-Tomasi角点检测:

相比于Harris角点检测:

R=det(M)-k(trace(M))^2

Shi-Tomasi角点检测提出

R = min(\lambda _{1},\lambda _{2})

如果它大于一个阈值,就被认为是一个角。只有当λ1和λ2高于一个最小值λmin时,它才被认为是一个角。

corners = cv.goodFeaturesToTrack( image, maxCorners, qualityLevel, minDistance[, corners[, mask[, blockSize[, useHarrisDetector[, k]]]]] )image:8位或32位浮点型输入图像,单通道maxCorners:角点数目最大值,如果实际检测的角点超过此值,则只返回前maxCorners个强角点qualityLevel:角点的品质因子,0-1中的数字minDistance:对于初选出的角点而言,如果在其周围minDistance范围内存在其他更强角点,则将此角点删除_mask:指定感兴趣区,如不需在整幅图上寻找角点,则用此参数指定ROIblockSize:计算协方差矩阵时的窗口大小useHarrisDetector:指示是否使用Harris角点检测,如不指定,则计算shi-tomasi角点harrisK:Harris角点检测需要的k值一般来说,可以只输入image maxCorners, qualityLevel, minDistanc

Shi-Tomasi角点检测实例:

import cv2.cv2
import numpy as np
import cv2 as cv
from matplotlib import pyplot as pltimg = cv.imread(r'XXXXX.jpg')
img = cv2.resize(img, (0, 0), fx=0.1, fy=0.1, interpolation=cv2.INTER_NEAREST)
gray = cv.cvtColor(img,cv.COLOR_BGR2GRAY)
corners = cv.goodFeaturesToTrack(gray,45,0.01,10)
corners = np.int0(corners)
#img = cv.cvtColor(img,cv.COLOR_BGR2RGB)
for i in corners:x,y = i.ravel()cv.circle(img,(x,y),5,(0,0,255),-1)
cv.imwrite(r'XXXXXX.jpg',img)

 对比Harris角点检测:

import cv2.cv2
import numpy as np
import cv2 as cv
from matplotlib import pyplot as pltimg = cv.imread(r'XXXX\beatiful.jpg')
img = cv2.resize(img, (0, 0), fx=0.1, fy=0.1, interpolation=cv2.INTER_NEAREST)
gray = cv.cvtColor(img, cv.COLOR_BGR2GRAY)
gray = np.float32(gray)
dst = cv.cornerHarris(gray, 2, 3, 0.04)dst = cv.dilate(dst, None)img[dst > 0.01 * dst.max()] = [0, 0, 255]
cv.imshow('dst', img)
cv.waitKey(0)
cv.imwrite(r'C:\Users\12860\Desktop\beatiful1.jpg',img)

 很显然Shi-Tomasi角点检测的效果更好。

这篇关于cv.goodFeaturesToTrack:Shi-Tomasi角点检测-OpenCV-python的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/483289

相关文章

python: 多模块(.py)中全局变量的导入

文章目录 global关键字可变类型和不可变类型数据的内存地址单模块(单个py文件)的全局变量示例总结 多模块(多个py文件)的全局变量from x import x导入全局变量示例 import x导入全局变量示例 总结 global关键字 global 的作用范围是模块(.py)级别: 当你在一个模块(文件)中使用 global 声明变量时,这个变量只在该模块的全局命名空

使用opencv优化图片(画面变清晰)

文章目录 需求影响照片清晰度的因素 实现降噪测试代码 锐化空间锐化Unsharp Masking频率域锐化对比测试 对比度增强常用算法对比测试 需求 对图像进行优化,使其看起来更清晰,同时保持尺寸不变,通常涉及到图像处理技术如锐化、降噪、对比度增强等 影响照片清晰度的因素 影响照片清晰度的因素有很多,主要可以从以下几个方面来分析 1. 拍摄设备 相机传感器:相机传

综合安防管理平台LntonAIServer视频监控汇聚抖动检测算法优势

LntonAIServer视频质量诊断功能中的抖动检测是一个专门针对视频稳定性进行分析的功能。抖动通常是指视频帧之间的不必要运动,这种运动可能是由于摄像机的移动、传输中的错误或编解码问题导致的。抖动检测对于确保视频内容的平滑性和观看体验至关重要。 优势 1. 提高图像质量 - 清晰度提升:减少抖动,提高图像的清晰度和细节表现力,使得监控画面更加真实可信。 - 细节增强:在低光条件下,抖

【Python编程】Linux创建虚拟环境并配置与notebook相连接

1.创建 使用 venv 创建虚拟环境。例如,在当前目录下创建一个名为 myenv 的虚拟环境: python3 -m venv myenv 2.激活 激活虚拟环境使其成为当前终端会话的活动环境。运行: source myenv/bin/activate 3.与notebook连接 在虚拟环境中,使用 pip 安装 Jupyter 和 ipykernel: pip instal

【机器学习】高斯过程的基本概念和应用领域以及在python中的实例

引言 高斯过程(Gaussian Process,简称GP)是一种概率模型,用于描述一组随机变量的联合概率分布,其中任何一个有限维度的子集都具有高斯分布 文章目录 引言一、高斯过程1.1 基本定义1.1.1 随机过程1.1.2 高斯分布 1.2 高斯过程的特性1.2.1 联合高斯性1.2.2 均值函数1.2.3 协方差函数(或核函数) 1.3 核函数1.4 高斯过程回归(Gauss

烟火目标检测数据集 7800张 烟火检测 带标注 voc yolo

一个包含7800张带标注图像的数据集,专门用于烟火目标检测,是一个非常有价值的资源,尤其对于那些致力于公共安全、事件管理和烟花表演监控等领域的人士而言。下面是对此数据集的一个详细介绍: 数据集名称:烟火目标检测数据集 数据集规模: 图片数量:7800张类别:主要包含烟火类目标,可能还包括其他相关类别,如烟火发射装置、背景等。格式:图像文件通常为JPEG或PNG格式;标注文件可能为X

【学习笔记】 陈强-机器学习-Python-Ch15 人工神经网络(1)sklearn

系列文章目录 监督学习:参数方法 【学习笔记】 陈强-机器学习-Python-Ch4 线性回归 【学习笔记】 陈强-机器学习-Python-Ch5 逻辑回归 【课后题练习】 陈强-机器学习-Python-Ch5 逻辑回归(SAheart.csv) 【学习笔记】 陈强-机器学习-Python-Ch6 多项逻辑回归 【学习笔记 及 课后题练习】 陈强-机器学习-Python-Ch7 判别分析 【学

nudepy,一个有趣的 Python 库!

更多资料获取 📚 个人网站:ipengtao.com 大家好,今天为大家分享一个有趣的 Python 库 - nudepy。 Github地址:https://github.com/hhatto/nude.py 在图像处理和计算机视觉应用中,检测图像中的不适当内容(例如裸露图像)是一个重要的任务。nudepy 是一个基于 Python 的库,专门用于检测图像中的不适当内容。该

基于 YOLOv5 的积水检测系统:打造高效智能的智慧城市应用

在城市发展中,积水问题日益严重,特别是在大雨过后,积水往往会影响交通甚至威胁人们的安全。通过现代计算机视觉技术,我们能够智能化地检测和识别积水区域,减少潜在危险。本文将介绍如何使用 YOLOv5 和 PyQt5 搭建一个积水检测系统,结合深度学习和直观的图形界面,为用户提供高效的解决方案。 源码地址: PyQt5+YoloV5 实现积水检测系统 预览: 项目背景

opencv 滚动条

参数介绍:createTrackbar( trackbarname , "hello" , &alpha_slider ,alpha_max ,  on_trackbar )  ;在标签中显示的文字(提示滑动条的用途) TrackbarName创建的滑动条要放置窗体的名字 “hello”滑动条的取值范围从 0 到 alpha_max (最小值只能为 zero).滑动后的值存放在