动态规划法求解TSP问题 C++

2023-12-12 00:18

本文主要是介绍动态规划法求解TSP问题 C++,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

    “鸡汤惠”帮“鸭汤莹”看代码,于是翻出了自己写的动态规划法求解TSP问题,于是整理了一下。(算法思想在知识点整理的部分,这里是具体实现的代码)

问题描述:

      TSP问题是指旅行家要旅行n个城市,要求各个城市经历且仅经历一次然后回到出发城市,并要求所走的路程最短。各个城市间的距离可以用代价矩阵来表示。假设从顶点i出发,令d(i, V')表示从顶点i出发经过V'中各个顶点一次且仅一次,最后回到出发点i的最短路径长度,开始时,V'=V-{i},于是,TSP问题的动态规划函数为:

    d(i,V')=min{cik+d(k,V-{k})}(k∈V')      (式1)

    d(k,{})=cki(k≠i)                                     (式2)

程序清单:

#include<iostream>
#include<iomanip>
#include<cmath>
using namespace std;
#define MAX_IN 10class Tsp
{private:int city_number;		//城市个数int **distance;			//城市距离矩阵int **process;			//求最短路径的过程矩阵public:Tsp(int city_number);		//构造函数void correct();			//矫正输入的城市代价矩阵void printCity();		//打印城市的距离矩阵void getShoretstDistance();	//动态规划法求最短路径void printProcess();		//打印过程矩阵};//构造函数
Tsp::Tsp(int city_num)
{int i=0,j=0;city_number=city_num;//初始化城市距离矩阵distance=new int*[city_number];cout<<"请输入"<<city_number<<"个城市之间的距离"<<endl;for(i=0;i<city_number;i++){distance[i]=new int[city_number];for(j=0;j<city_number;j++)cin>>distance[i][j];}//生成过程矩阵process=new int*[city_number];for(i=0;i<city_number;i++){process[i]=new int[1<<(city_number-1)];}}//纠正用户输入的城市代价矩阵
void Tsp::correct()
{int i;for(i=0;i<city_number;i++){distance[i][i]=0;}
}//打印城市距离
void Tsp::printCity()
{int i,j;//打印代价矩阵cout<<"您输入的城市距离如下"<<endl;for(i=0;i<city_number;i++){for(j=0;j<city_number;j++)cout<<setw(3)<<distance[i][j];cout<<endl;}
}//动态规划法求最短路径
void Tsp::getShoretstDistance()
{int i,j,k;//初始化第一列for(i=0;i<city_number;i++){process[i][0]=distance[i][0];}//初始化剩余列for(j=1;j<(1<<(city_number-1));j++){for(i=0;i<city_number;i++){process[i][j]=0x7ffff;//设0x7ffff为无穷大//对于数字x,要看它的第i位是不是1,通过判断布尔表达式 (((x >> (i - 1) ) & 1) == 1的真值来实现if(((j>>(i-1))&1)==1){continue;}for(k=1;k<city_number;k++){//不能达到k城市if(((j>>(k-1))&1)==0){continue;}if(process[i][j]>distance[i][k]+process[k][j ^ (1 << (k - 1))]){process[i][j]=distance[i][k]+process[k][j ^ (1 << (k - 1))];				//cout<<i<<"行"<<j<<"列为:"<<process[i][j]<<endl;}}}}cout<<"最短路径为"<<process[0][(1<<(city_number-1))-1]<<endl;}//打印过程矩阵
void Tsp::printProcess()
{int i,j;for(j=0;j<1<<(city_number-1);j++){cout<<setw(3)<<j;}cout<<endl;for(i=0;i<city_number;i++){for(j=0;j<1<<(city_number-1);j++){if(process[i][j]==0x7ffff)process[i][j]=-1;cout<<setw(3)<<process[i][j];}cout<<endl;}
}//主函数
int main(void)
{cout<<"欢迎来到动态规划求旅行商问题,请输入城市个数";int city_number;while(cin>>city_number){Tsp tsp(city_number);		//初始化城市代价矩阵tsp.correct();					//纠正用户输入的代价矩阵tsp.printCity();				//打印城市tsp.getShoretstDistance();		//求出最短路径tsp.printProcess();			//打印计算矩阵cout<<"---------------------------------------"<<endl;cout<<"欢迎来到动态规划求旅行商问题,请输入城市个数";}return 0;
}
/*0 3 3 2 6
3 0 7 3 2
3 7 0 2 5
2 3 2 0 3
6 2 5 3 0
*/
/*0, 10, 20, 30, 40, 50,12, 0 ,18, 30, 25, 21,23, 19, 0, 5,  10, 15,34, 32, 4, 0,  8,  16,45, 27, 11,10, 0,  18,56, 22, 16,20, 12,  0,
*/

部分说明:

 

   个人认为动态规划法求解TSP问题的难点在于(1)求城市(除了起点)之外的其他城市子集;(2)判断城市是否位于一个子集中。

       我遇到的问题是起初认为子集需要按照子集元素的个数从小到大需要排序,在这里花费了比较多的时间,后来发现其实没有必要去排序。

(1)关于求子集

   例如4个城市{0,1,2,3},{1,2,3}依次为{},{1},{2},{1,2},{3},{1,3},{2,3},{1,2,3},如果用111表示城市321,则上述子集转换成二进制为0,01,10,001,100,101,110,111,十进制恰好是0,1,2,3,4,5,6,7。虽然子集{1,2}在{3}之前,但遍历子集{1,2}的过程并不会使用过程矩阵中关于3的行列,因此不需要排序。

(2)判断一个城市是否位于子集中

      判断一个城市是否在子集中,通过位运算(((x>>(i-1))&1)==1来实现,比如集合{1,3,5,6,7}表示成二进制串用1110101,其中集合里面有的数对应的位数写成1,没有的写成0。要判断第3位是不是1,就把1110101右移(3-1)位,得到11101,然后结果和00001进行&运算,如果结果是1说明第3位是1,则说明城市在子集中。

(3)填过程矩阵,以process[2][5]为例。

    process[2][5] 表示从2出发,通过{1,3},最后回到起点。那么process[2][5] = min{C21 + process [1][{3}],C23 + process [3][{1}]} = min{C21 + process [1][4],C23 + process [3][1]} ;

  从2出发,要去{1,3}。先考虑去1的路,去了1集合{1,3}中只剩下{3} ,{3}对应二进制100,十进制4,所以要求的process表就是process [1][4],这个4可以通过(101)^(1)得到,(1) = 1<<(1-1);再看去3的路,去了3集合{1,3}中只剩下{1},{1}对应这1,所以要求的process表就是process [3][1],1通过(101) ^ (100)得到。(100) = 1<<(3-1)。

 

参考结果:

 

 

 

 

这篇关于动态规划法求解TSP问题 C++的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/482591

相关文章

C++使用printf语句实现进制转换的示例代码

《C++使用printf语句实现进制转换的示例代码》在C语言中,printf函数可以直接实现部分进制转换功能,通过格式说明符(formatspecifier)快速输出不同进制的数值,下面给大家分享C+... 目录一、printf 原生支持的进制转换1. 十进制、八进制、十六进制转换2. 显示进制前缀3. 指

如何解决idea的Module:‘:app‘platform‘android-32‘not found.问题

《如何解决idea的Module:‘:app‘platform‘android-32‘notfound.问题》:本文主要介绍如何解决idea的Module:‘:app‘platform‘andr... 目录idea的Module:‘:app‘pwww.chinasem.cnlatform‘android-32

C++中初始化二维数组的几种常见方法

《C++中初始化二维数组的几种常见方法》本文详细介绍了在C++中初始化二维数组的不同方式,包括静态初始化、循环、全部为零、部分初始化、std::array和std::vector,以及std::vec... 目录1. 静态初始化2. 使用循环初始化3. 全部初始化为零4. 部分初始化5. 使用 std::a

kali linux 无法登录root的问题及解决方法

《kalilinux无法登录root的问题及解决方法》:本文主要介绍kalilinux无法登录root的问题及解决方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,... 目录kali linux 无法登录root1、问题描述1.1、本地登录root1.2、ssh远程登录root2、

SpringBoot应用中出现的Full GC问题的场景与解决

《SpringBoot应用中出现的FullGC问题的场景与解决》这篇文章主要为大家详细介绍了SpringBoot应用中出现的FullGC问题的场景与解决方法,文中的示例代码讲解详细,感兴趣的小伙伴可... 目录Full GC的原理与触发条件原理触发条件对Spring Boot应用的影响示例代码优化建议结论F

MySQL 中查询 VARCHAR 类型 JSON 数据的问题记录

《MySQL中查询VARCHAR类型JSON数据的问题记录》在数据库设计中,有时我们会将JSON数据存储在VARCHAR或TEXT类型字段中,本文将详细介绍如何在MySQL中有效查询存储为V... 目录一、问题背景二、mysql jsON 函数2.1 常用 JSON 函数三、查询示例3.1 基本查询3.2

MySQL中动态生成SQL语句去掉所有字段的空格的操作方法

《MySQL中动态生成SQL语句去掉所有字段的空格的操作方法》在数据库管理过程中,我们常常会遇到需要对表中字段进行清洗和整理的情况,本文将详细介绍如何在MySQL中动态生成SQL语句来去掉所有字段的空... 目录在mysql中动态生成SQL语句去掉所有字段的空格准备工作原理分析动态生成SQL语句在MySQL

C++ vector的常见用法超详细讲解

《C++vector的常见用法超详细讲解》:本文主要介绍C++vector的常见用法,包括C++中vector容器的定义、初始化方法、访问元素、常用函数及其时间复杂度,通过代码介绍的非常详细,... 目录1、vector的定义2、vector常用初始化方法1、使编程用花括号直接赋值2、使用圆括号赋值3、ve

Pyserial设置缓冲区大小失败的问题解决

《Pyserial设置缓冲区大小失败的问题解决》本文主要介绍了Pyserial设置缓冲区大小失败的问题解决,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面... 目录问题描述原因分析解决方案问题描述使用set_buffer_size()设置缓冲区大小后,buf

resultMap如何处理复杂映射问题

《resultMap如何处理复杂映射问题》:本文主要介绍resultMap如何处理复杂映射问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录resultMap复杂映射问题Ⅰ 多对一查询:学生——老师Ⅱ 一对多查询:老师——学生总结resultMap复杂映射问题