MIT线性代数笔记-第28讲-正定矩阵,最小值

2023-12-11 15:30

本文主要是介绍MIT线性代数笔记-第28讲-正定矩阵,最小值,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

  • 28.正定矩阵,最小值
    • 打赏

28.正定矩阵,最小值

由第 26 26 26讲的末尾可知在矩阵为实对称矩阵时,正定矩阵有以下四种判定方法(都是充要条件):

  • 所有特征值都为正
  • 左上角所有 k k k阶子矩阵行列式都为正( 1 ≤ k ≤ n 1 \le k \le n 1kn
  • 所有主元都为正
  • 对于任意非零实向量 x ⃗ \vec{x} x 均满足 x ⃗ T M x ⃗ > 0 \vec{x}^T M \vec{x} > 0 x TMx >0

其中最后一种常常作为正定矩阵的定义

当上述判定条件中的正都换为非负时,得到的就是半正定矩阵

对于一个实对称矩阵 A A A x ⃗ T A x ⃗ \vec{x}^T A \vec{x} x TAx 等于一个由二次项构成的多项式,这种形式就是矩阵的二次型

例: 对于矩阵 A = [ 2 6 6 7 ] A = \begin{bmatrix} 2 & 6 \\ 6 & 7 \end{bmatrix} A=[2667],它的二次型为 x ⃗ T A x ⃗ = [ x 1 x 2 ] [ 2 6 6 7 ] [ x 1 x 2 ] = 2 x 1 2 + 12 x 1 x 2 + 7 x 2 2 \vec{x}^T A \vec{x} = \begin{bmatrix} x_1 & x_2 \end{bmatrix} \begin{bmatrix} 2 & 6 \\ 6 & 7 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = 2 x_1^2 + 12 x_1 x_2 + 7 x_2^2 x TAx =[x1x2][2667][x1x2]=2x12+12x1x2+7x22

  1. 容易证明无论对于多少阶的实对称矩阵,得到的都是二次项构成的多项式,即不存在三次型,四次型等

    也就是说如果一个实对称矩阵的二次型恒大于零,那么它是一个正定矩阵,当考虑一个多元二次函数是否恒为正时,可以找到对应的对称矩阵并判断是否为正定矩阵

    如果这个多元二次函数有二次项或常数项,可以给 x ⃗ \vec{x} x 末尾添加一个元素 1 1 1,那么对应的对称矩阵最后一个元素即为常数项的值,最后一列和最后一行的元素(除最后一个)依次为对应的自变量的系数的二分之一

    即函数 f ( x 1 , ⋯ , x n ) = a 1 , 1 x 1 2 + ⋯ + a n , n x n 2 + b 1 x 1 + ⋯ + b n x n + c f(x_1 , \cdots , x_n) = a_{1 , 1} x_1^2 + \cdots + a_{n , n} x_n^2 + b_1 x_1 + \cdots + b_n x_n + c f(x1,,xn)=a1,1x12++an,nxn2+b1x1++bnxn+c(其中 a i , j a_{i , j} ai,j表示 x i x j x_i x_j xixj的系数)对应的对称矩阵为

    [ a 1 , 1 a 1 , 2 2 ⋯ b 1 2 a 1 , 2 2 a 2 , 2 ⋯ b 2 2 ⋮ ⋮ ⋱ ⋮ b 1 2 b 2 2 ⋯ c ] \begin{bmatrix} a_{1 , 1} & \dfrac{a_{1 , 2}}{2} & \cdots & \dfrac{b_1}{2} \\ \dfrac{a_{1 , 2}}{2} & a_{2 , 2} & \cdots & \dfrac{b_2}{2} \\ \vdots & \vdots & \ddots & \vdots \\ \dfrac{b_1}{2} & \dfrac{b_2}{2} & \cdots & c \end{bmatrix} a1,12a1,22b12a1,2a2,22b22b12b2c ,不过此时“对应的对称矩阵是正定矩阵”就成了充分条件而非充要条件

  2. 考虑将一个二阶实对称矩阵的二次型表示为图像,继续使用刚才的例子 [ 2 6 6 7 ] \begin{bmatrix} 2 & 6 \\ 6 & 7 \end{bmatrix} [2667]得到 z = 2 x 2 + 12 x y + 7 y 2 z = 2x^2 + 12xy + 7y^2 z=2x2+12xy+7y2

    • y = 0 , x = 0 y = 0 , x = 0 y=0,x=0时,分别得到 z O x zOx zOx面和 y O z yOz yOz面上的二次函数
    • x = y x = y x=y时,得到一个 z O x zOx zOx面和 y O z yOz yOz面中间的二次函数

    依此类推可以发现在部分情况下 z < 0 z < 0 z<0,并且可以想象到这个函数图像类似一个马鞍,原点是一个鞍点,在某个方向是极大值,在另一个方向是极小值

    反之,当矩阵为正定矩阵时,图像类似一个碗(抛物面)

    此时将图像水平切开,即令 z z z为一个常数,那么马鞍图像的截面为一个双曲线,碗图像的截面为一个椭圆

  3. 把刚才的例子的最后一个元素换为 20 20 20,得到 [ 2 6 6 20 ] \begin{bmatrix} 2 & 6 \\ 6 & 20 \end{bmatrix} [26620]

    二者的二次型分别配方得到 { 2 x 1 2 + 12 x 1 x 2 + 7 x 2 2 = 2 ( x + 3 y ) 2 − 11 y 2 2 x 1 2 + 12 x 1 x 2 + 20 x 2 2 = 2 ( x + 3 y ) 2 + 2 y 2 \left \{ \begin{matrix} 2 x_1^2 + 12 x_1 x_2 + 7 x_2^2 = 2(x + 3y)^2 - 11y^2 \\ 2 x_1^2 + 12 x_1 x_2 + 20 x_2^2 = 2(x + 3y)^2 + 2y^2 \end{matrix} \right. {2x12+12x1x2+7x22=2(x+3y)211y22x12+12x1x2+20x22=2(x+3y)2+2y2

    实际上配方后这些平方的系数和实对称矩阵的主元有关

    例如 [ 2 6 6 20 ] L U \begin{bmatrix} 2 & 6 \\ 6 & 20 \end{bmatrix} LU [26620]LU分解后得到 [ 1 0 3 1 ] [ 2 6 0 2 ] L U \begin{matrix} \begin{bmatrix} 1 & 0 \\ 3 & 1 \end{bmatrix} & \begin{bmatrix} 2 & 6 \\ 0 & 2 \end{bmatrix} \\ L & U \end{matrix} [1301]L[2062]U,两个主元分别用作平方的系数,而 3 3 3用作第一个平方里 y y y的系数

    n n n阶实对称矩阵的二次型可以写成 d 1 ( x 1 + ⋯ + e 1 , n x n ) 2 + d 2 ( x 2 + ⋯ + e 2 , n x n ) 2 + ⋯ + d n x n 2 d_1(x_1 + \cdots + e_{1 , n} x_n)^2 + d_2(x_2 + \cdots + e_{2 , n} x_n)^2 + \cdots + d_n x_n^2 d1(x1++e1,nxn)2+d2(x2++e2,nxn)2++dnxn2

    模拟一下消元过程可以发现 d i = u i , i , e i , j = l j , i d_i = u_{i , i} , e_{i , j} = l_{j , i} di=ui,i,ei,j=lj,i u , l u , l u,l表示 L U LU LU分解后 U , L U , L U,L中的元素),这是可以证明的,但是我还没找到描述起来比较简洁的证明方法

    由此可以发现平方项的系数即为对应主元,所以正定矩阵的主元均为正数

  4. 已知某个二元函数 f ( x , y ) f(x , y) f(x,y) ( x 0 y 0 ) (x_0 y_0) (x0y0)处有极小值的一个充分条件是函数在 ( x 0 , y 0 ) (x_0 , y_0) (x0,y0)的某邻域内连续且有一阶及二阶偏导数,又 f x ( x 0 , y 0 ) = f x ( x 0 , y 0 ) = 0 , f x x ( x 0 , y 0 ) f y y ( x 0 , y 0 ) − f x y 2 ( x 0 , y 0 ) > 0 f_x(x_0 , y_0) = f_x(x_0 , y_0) = 0 , f_{xx}(x_0 , y_0) f_{yy}(x_0 , y_0) - f_{xy}^2(x_0 , y_0) > 0 fx(x0,y0)=fx(x0,y0)=0,fxx(x0,y0)fyy(x0,y0)fxy2(x0,y0)>0 f x x ( x 0 , y 0 ) > 0 f_{xx}(x_0 , y_0) > 0 fxx(x0,y0)>0

    易证最后两个条件刚好与矩阵 [ f x x ( x 0 , y 0 ) f x y ( x 0 , y 0 ) f y x ( x 0 , y 0 ) f y y ( x 0 , y 0 ) ] \begin{bmatrix} f_{xx}(x_0 , y_0) & f_{xy}(x_0 , y_0) \\ f_{yx}(x_0 , y_0) & f_{yy}(x_0 , y_0) \end{bmatrix} [fxx(x0,y0)fyx(x0,y0)fxy(x0,y0)fyy(x0,y0)]是正定矩阵等价

    这还可以推广至更加多元的函数

    证明: 暂时不会证明 \color{OrangeRed}暂时不会证明 暂时不会证明

  5. 对于一个二阶正定矩阵 A A A,把它拆为 Q Λ Q T Q \Lambda Q^T QΛQT,其中的 Q , Q T Q , Q^T Q,QT可以分别被视为行向量和列向量的旋转矩阵,并且二者导致的旋转一样

    x ⃗ T A x ⃗ = x ⃗ T Q Λ Q T x ⃗ = 1 \vec{x}^T A \vec{x} = \vec{x}^T Q \Lambda Q^T \vec{x} = 1 x TAx =x TQΛQTx =1,依本讲第 2 2 2点可知这是一个中心在原点正上方的平行于 x O y xOy xOy面的斜椭圆的方程,容易发现两个特征值分别决定斜椭圆长轴和短轴长度,即 2 1 λ 1 , 2 1 λ 2 2 \sqrt{\dfrac{1}{\lambda_1}} , 2 \sqrt{\dfrac{1}{\lambda_2}} 2λ11 ,2λ21 分别为长轴和短轴长度(其中 λ 1 < λ 2 \lambda_1 < \lambda_2 λ1<λ2),两个特征向量分别与长轴和短轴方向一致

    推广到更加高阶,这种关系也是成立的,比如三阶正定矩阵的三个特征值倒数的平方根的两倍分别等于对应椭球的三个主轴长度,三个特征向量分别与三个主轴方向一致

    这就是为什么这种拆分被称为主轴定理

    证明: 暂时不会证明 \color{OrangeRed}暂时不会证明 暂时不会证明


打赏

制作不易,若有帮助,欢迎打赏!
赞赏码

支付宝付款码

这篇关于MIT线性代数笔记-第28讲-正定矩阵,最小值的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/481174

相关文章

【学习笔记】 陈强-机器学习-Python-Ch15 人工神经网络(1)sklearn

系列文章目录 监督学习:参数方法 【学习笔记】 陈强-机器学习-Python-Ch4 线性回归 【学习笔记】 陈强-机器学习-Python-Ch5 逻辑回归 【课后题练习】 陈强-机器学习-Python-Ch5 逻辑回归(SAheart.csv) 【学习笔记】 陈强-机器学习-Python-Ch6 多项逻辑回归 【学习笔记 及 课后题练习】 陈强-机器学习-Python-Ch7 判别分析 【学

系统架构师考试学习笔记第三篇——架构设计高级知识(20)通信系统架构设计理论与实践

本章知识考点:         第20课时主要学习通信系统架构设计的理论和工作中的实践。根据新版考试大纲,本课时知识点会涉及案例分析题(25分),而在历年考试中,案例题对该部分内容的考查并不多,虽在综合知识选择题目中经常考查,但分值也不高。本课时内容侧重于对知识点的记忆和理解,按照以往的出题规律,通信系统架构设计基础知识点多来源于教材内的基础网络设备、网络架构和教材外最新时事热点技术。本课时知识

poj 3258 二分最小值最大

题意: 有一些石头排成一条线,第一个和最后一个不能去掉。 其余的共可以去掉m块,要使去掉后石头间距的最小值最大。 解析: 二分石头,最小值最大。 代码: #include <iostream>#include <cstdio>#include <cstdlib>#include <algorithm>#include <cstring>#include <c

hdu 4565 推倒公式+矩阵快速幂

题意 求下式的值: Sn=⌈ (a+b√)n⌉%m S_n = \lceil\ (a + \sqrt{b}) ^ n \rceil\% m 其中: 0<a,m<215 0< a, m < 2^{15} 0<b,n<231 0 < b, n < 2^{31} (a−1)2<b<a2 (a-1)^2< b < a^2 解析 令: An=(a+b√)n A_n = (a +

线性代数|机器学习-P36在图中找聚类

文章目录 1. 常见图结构2. 谱聚类 感觉后面几节课的内容跨越太大,需要补充太多的知识点,教授讲得内容跨越较大,一般一节课的内容是书本上的一章节内容,所以看视频比较吃力,需要先预习课本内容后才能够很好的理解教授讲解的知识点。 1. 常见图结构 假设我们有如下图结构: Adjacency Matrix:行和列表示的是节点的位置,A[i,j]表示的第 i 个节点和第 j 个

论文阅读笔记: Segment Anything

文章目录 Segment Anything摘要引言任务模型数据引擎数据集负责任的人工智能 Segment Anything Model图像编码器提示编码器mask解码器解决歧义损失和训练 Segment Anything 论文地址: https://arxiv.org/abs/2304.02643 代码地址:https://github.com/facebookresear

数学建模笔记—— 非线性规划

数学建模笔记—— 非线性规划 非线性规划1. 模型原理1.1 非线性规划的标准型1.2 非线性规划求解的Matlab函数 2. 典型例题3. matlab代码求解3.1 例1 一个简单示例3.2 例2 选址问题1. 第一问 线性规划2. 第二问 非线性规划 非线性规划 非线性规划是一种求解目标函数或约束条件中有一个或几个非线性函数的最优化问题的方法。运筹学的一个重要分支。2

hdu 6198 dfs枚举找规律+矩阵乘法

number number number Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Problem Description We define a sequence  F : ⋅   F0=0,F1=1 ; ⋅   Fn=Fn

【C++学习笔记 20】C++中的智能指针

智能指针的功能 在上一篇笔记提到了在栈和堆上创建变量的区别,使用new关键字创建变量时,需要搭配delete关键字销毁变量。而智能指针的作用就是调用new分配内存时,不必自己去调用delete,甚至不用调用new。 智能指针实际上就是对原始指针的包装。 unique_ptr 最简单的智能指针,是一种作用域指针,意思是当指针超出该作用域时,会自动调用delete。它名为unique的原因是这个

查看提交历史 —— Git 学习笔记 11

查看提交历史 查看提交历史 不带任何选项的git log-p选项--stat 选项--pretty=oneline选项--pretty=format选项git log常用选项列表参考资料 在提交了若干更新,又或者克隆了某个项目之后,你也许想回顾下提交历史。 完成这个任务最简单而又有效的 工具是 git log 命令。 接下来的例子会用一个用于演示的 simplegit