Python用Apriori 算法关联规则分析亚马逊购买书籍关联推荐客户和网络图可视化

本文主要是介绍Python用Apriori 算法关联规则分析亚马逊购买书籍关联推荐客户和网络图可视化,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

最近我们被客户要求撰写关于Apriori的研究报告,包括一些图形和统计输出。

Apriori 算法是一个相当新的算法,由 Agrawal 和 Srikant 于 1994 年提出。它是一种用于频繁项集挖掘的算法,允许公司理解和组织向上销售和交叉销售活动。

视频:R语言关联规则模型(Apriori算法)挖掘杂货店的交易数据与交互可视化

关联规则模型、Apriori算法及R语言挖掘杂货店交易数据与交互可视化

,时长07:03

最强大的应用程序之一是我们在亚马逊上在线购物时看到的推荐系统 - 以及当今几乎所有电子商务网站上都存在的各种其他版本。

这是为了帮助理解一个非常简单的数据集,其中包含单个国际标准书号 (ISBN),它是一本书的唯一国际出版商标识符号。每行代表购买了所列书籍的唯一客户。

目标是了解基本购买行为,向客户推荐的其他书籍是什么——这样它可以提高公司的收入以及对所提供服务的整体满意度。

我们以网络图结束,该图展示了置信度高于 55% 的关系。

设置和导入数据集

import numpy as np
import pandas as pddata.head()

data.shape

 

数据集上的EDA

#执行堆叠的步骤,转换为字符串,包括删除索引
dt2 = pd.DataFrame
dt2 = dt2.reset_index(drop = True)

 

dt2.nunique()  # 总共有4,999本独特的书籍

 

#数据集中购买最多的前10本书
top0 = pd.DataFrame(dt2.value_counts(sort= True, ascending=False).head(10))
to10

 

  
# 创建条形图 
plt.bar(t0.index, top_10['Frequency']) 

 

预处理

tdf = t.fit(d2).transform(da2)

 


ted = t.fit(r).transform(tr)
t_f

 

tdf = df.astype("int")t_f

 


oks = d.DataFrame(tf, columns=e.columns_)
bos.head()

 

 

 

建立Apriori模型


runets = apriori(o2, min_support=0.01, use_colnames=True)

feqts

fetes.sort_values( by = ['support'] ,ascending = False)

 


rls  =  assoc(fret, metric = "lift", min_threshold = 1)

 

re.solues('confidence', ascending = False)
ruls.head()

 

rul = rls[res['confidence'] >= 0.55]
rue

 

结论网络图

fig, ax = plt.subplots(figsize = (10,6))
G = x.from_pandas_edgelist(ul,source = 'antecedents')
n.draw(A)

 


这篇关于Python用Apriori 算法关联规则分析亚马逊购买书籍关联推荐客户和网络图可视化的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/478960

相关文章

Python数据验证神器Pydantic库的使用和实践中的避坑指南

《Python数据验证神器Pydantic库的使用和实践中的避坑指南》Pydantic是一个用于数据验证和设置的库,可以显著简化API接口开发,文章通过一个实际案例,展示了Pydantic如何在生产环... 目录1️⃣ 崩溃时刻:当你的API接口又双叒崩了!2️⃣ 神兵天降:3行代码解决验证难题3️⃣ 深度

Python+FFmpeg实现视频自动化处理的完整指南

《Python+FFmpeg实现视频自动化处理的完整指南》本文总结了一套在Python中使用subprocess.run调用FFmpeg进行视频自动化处理的解决方案,涵盖了跨平台硬件加速、中间素材处理... 目录一、 跨平台硬件加速:统一接口设计1. 核心映射逻辑2. python 实现代码二、 中间素材处

python中的flask_sqlalchemy的使用及示例详解

《python中的flask_sqlalchemy的使用及示例详解》文章主要介绍了在使用SQLAlchemy创建模型实例时,通过元类动态创建实例的方式,并说明了如何在实例化时执行__init__方法,... 目录@orm.reconstructorSQLAlchemy的回滚关联其他模型数据库基本操作将数据添

JAVA项目swing转javafx语法规则以及示例代码

《JAVA项目swing转javafx语法规则以及示例代码》:本文主要介绍JAVA项目swing转javafx语法规则以及示例代码的相关资料,文中详细讲解了主类继承、窗口创建、布局管理、控件替换、... 目录最常用的“一行换一行”速查表(直接全局替换)实际转换示例(JFramejs → JavaFX)迁移建

Spring Boot Interceptor的原理、配置、顺序控制及与Filter的关键区别对比分析

《SpringBootInterceptor的原理、配置、顺序控制及与Filter的关键区别对比分析》本文主要介绍了SpringBoot中的拦截器(Interceptor)及其与过滤器(Filt... 目录前言一、核心功能二、拦截器的实现2.1 定义自定义拦截器2.2 注册拦截器三、多拦截器的执行顺序四、过

Python实现快速扫描目标主机的开放端口和服务

《Python实现快速扫描目标主机的开放端口和服务》这篇文章主要为大家详细介绍了如何使用Python编写一个功能强大的端口扫描器脚本,实现快速扫描目标主机的开放端口和服务,感兴趣的小伙伴可以了解下... 目录功能介绍场景应用1. 网络安全审计2. 系统管理维护3. 网络故障排查4. 合规性检查报错处理1.

Python轻松实现Word到Markdown的转换

《Python轻松实现Word到Markdown的转换》在文档管理、内容发布等场景中,将Word转换为Markdown格式是常见需求,本文将介绍如何使用FreeSpire.DocforPython实现... 目录一、工具简介二、核心转换实现1. 基础单文件转换2. 批量转换Word文件三、工具特性分析优点局

Python中4大日志记录库比较的终极PK

《Python中4大日志记录库比较的终极PK》日志记录框架是一种工具,可帮助您标准化应用程序中的日志记录过程,:本文主要介绍Python中4大日志记录库比较的相关资料,文中通过代码介绍的非常详细,... 目录一、logging库1、优点2、缺点二、LogAid库三、Loguru库四、Structlogphp

C++,C#,Rust,Go,Java,Python,JavaScript的性能对比全面讲解

《C++,C#,Rust,Go,Java,Python,JavaScript的性能对比全面讲解》:本文主要介绍C++,C#,Rust,Go,Java,Python,JavaScript性能对比全面... 目录编程语言性能对比、核心优势与最佳使用场景性能对比表格C++C#RustGoJavapythonjav

Python海象运算符:=的具体实现

《Python海象运算符:=的具体实现》海象运算符又称​​赋值表达式,Python3.8后可用,其核心设计是在表达式内部完成变量赋值并返回该值,从而简化代码逻辑,下面就来详细的介绍一下如何使用,感兴趣... 目录简介​​条件判断优化循环控制简化​推导式高效计算​正则匹配与数据提取​性能对比简介海象运算符