【图像分类】钢轨表面缺陷分类数据集介绍(4个类别)

2023-12-11 01:10

本文主要是介绍【图像分类】钢轨表面缺陷分类数据集介绍(4个类别),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

写在前面:
首先感谢兄弟们的支持,让我有创作的动力,在创作过程我会尽最大能力,保证作品的质量,如果有问题,可以私信我,让我们携手共进,共创辉煌。

路虽远,行则将至;事虽难,做则必成。只要有愚公移山的志气、滴水穿石的毅力,脚踏实地,埋头苦干,积跬步以至千里,就一定能够把宏伟目标变为美好现实。

数据集如下所示:

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

1.介绍

钢轨表面缺陷检测是指通过使用各种技术手段和设备,对钢轨表面进行检查和测量,以确定是否存在裂纹、掉块、剥离、锈蚀等缺陷的过程。这些缺陷可能会对铁路运输的安全和稳定性产生影响,因此及时进行检测和修复非常重要。钢轨表面缺陷检测通常采用无损检测技术,如超声检测、涡流检测等,以确保在不损害钢轨的前提下进行准确的检测。

2.数据

钢轨表面缺陷数据通常包括缺陷的类型、位置、尺寸以及严重程度等信息。这些数据可以通过各种检测设备和技术获取,如激光扫描仪、高清相机等。这些数据对于评估钢轨的状态、制定维护计划以及确保铁路运输的安全具有重要意义。通过对这些数据的分析和处理,可以实现对钢轨表面缺陷的准确检测和分类,有助于提高钢轨维护的效率和安全性。

本次介绍的数据总共4个类别,分别为Healthy、Joint、Squats、SSquats

Healthy类别:492张

在这里插入图片描述

Joint类别:408张

在这里插入图片描述

Squats类别:608张

在这里插入图片描述

SSquats类别:330张

在这里插入图片描述

3.总结

钢轨是铁路轨道的主要部件,起引导列车运行和直接承受车辆载荷的重要作用。随着我国既有线路改造以及高速铁路的快速发展,列车对钢轨的运行压力以及冲击载荷越来越强,钢轨表面产生的缺陷概率也越来越大。因此,采集钢轨表面缺陷数据,并基于先进的算法进行检测,是保障铁路安全和稳定运行的重要手段,具有极其重要的意义。

早期钢轨缺陷检测的主要手段是人工物探,该方法不仅效率低下,且无法形成客观统一的检测标准,正逐渐被其他方法所取代.随后,超声波、射线、渗透、涡流等钢轨无损探伤技术的应用推动了检测精度和检测速度的相对提高,这些检测方法虽然穿透能力强、操作安全,但容易受到外部干扰影响,检测结果抽象且难以处理。基于机器视觉的钢轨缺陷检测方法通过先进的视觉设备采集钢轨表面图像,根据算法对图像进行处理,具有实时性、非接触式等特点,能够很好地运用于钢轨缺陷检测领域。闵永智等提出了将平滑滤波器与阈值分割相结合的钢轨表面缺陷检测方法,减轻了光照变化、轨面不平对检测结果的影响,但该方法对背景图像的自适应平滑过程运算量过大,实时性不强。Shi等针对光照及环境变化造成钢轨图像降质的问题,提出了一种基于边缘检测算子改进的钢轨缺陷检测算法,改进后的算法可获得具有完整边缘信息的缺陷轮廓定位,但对复杂钢轨图像的检测准确率较低。Tastimur等提出了一种基于形态学特征提取的铁路缺陷检测算法,利用霍夫变换和图像处理技术对实时摄像机获取的钢轨图像进行检测,并通过形态学操作提取采集到的钢轨图像特征,实现对缺陷的识别,但复杂的图像预处理过程容易受到光照不均等外部因素的影响,造成一定程度的漏检.上述研究将传统图像处理技术与机器学习的方法相结合,设计了适用于特定场景下的钢轨缺陷检测方法,该类方法的检测性能易受外部环境的影响,检测速度难以满足实时检测要求。

Steel rails are the main components of railway tracks, playing an important role in guiding train operation and directly bearing vehicle loads. With the renovation of existing railway lines and the rapid development of high-speed railways in China, the operating pressure and impact load of trains on steel rails are becoming stronger, and the probability of defects on the surface of steel rails is also increasing. Therefore, collecting data on rail surface defects and detecting them based on advanced algorithms is an important means to ensure the safety and stable operation of railways, and has extremely important significance.The main method of early rail defect detection was manual geophysical exploration, which was not only inefficient but also unable to form objective and unified detection standards. It was gradually replaced by other methods. Subsequently, the application of non-destructive testing technologies such as ultrasound, radiation, penetration, and eddy current for steel rails has promoted the relative improvement of detection accuracy and speed. Although these detection methods have strong penetration ability and safe operation, they are easily affected by external interference, The detection results are abstract and difficult to process. The machine vision based rail defect detection method collects rail surface images through advanced visual equipment and processes the images based on algorithms. It has real-time and non-contact characteristics and can be well applied in the field of rail defect detection. Min Yongzhi et al. proposed a rail surface defect detection method that combines smooth filters with threshold segmentation, reducing the impact of lighting changes and uneven rail surface on the detection results. However, this method requires too much computation for the adaptive smoothing process of background images and lacks real-time performance. Shi et al. proposed an improved rail defect detection algorithm based on edge detection operator to address the issue of degraded rail images caused by lighting and environmental changes. The improved algorithm can obtain defect contour localization with complete edge information, but the detection accuracy for complex rail images is low. Tastimur et al. proposed a railway defect detection algorithm based on morphological feature extraction, which utilizes Hough transform and image processing technology to detect real-time camera captured rail images, and extracts collected rail image features through morphological operations to achieve defect recognition. However, complex image preprocessing processes are easily affected by external factors such as uneven lighting, Causing a certain degree of missed detection. The above research combines traditional image processing techniques with machine learning methods to design rail defect detection methods suitable for specific scenarios. The detection performance of these methods is easily affected by external environments, and the detection speed is difficult to meet real-time detection requirements.

4. 数据集获取

数据集,获取方式请看下面。

在这里插入图片描述

本数据集请扫码关注下方的公众号并添加公众号小编vx,另提供远程搭建环境、手把手指导、GPU训练模型服务,价格可谈,详细信息请扫码联系小助理。
在这里插入图片描述

这篇关于【图像分类】钢轨表面缺陷分类数据集介绍(4个类别)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/478941

相关文章

Java利用JSONPath操作JSON数据的技术指南

《Java利用JSONPath操作JSON数据的技术指南》JSONPath是一种强大的工具,用于查询和操作JSON数据,类似于SQL的语法,它为处理复杂的JSON数据结构提供了简单且高效... 目录1、简述2、什么是 jsONPath?3、Java 示例3.1 基本查询3.2 过滤查询3.3 递归搜索3.4

MySQL大表数据的分区与分库分表的实现

《MySQL大表数据的分区与分库分表的实现》数据库的分区和分库分表是两种常用的技术方案,本文主要介绍了MySQL大表数据的分区与分库分表的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有... 目录1. mysql大表数据的分区1.1 什么是分区?1.2 分区的类型1.3 分区的优点1.4 分

Mysql删除几亿条数据表中的部分数据的方法实现

《Mysql删除几亿条数据表中的部分数据的方法实现》在MySQL中删除一个大表中的数据时,需要特别注意操作的性能和对系统的影响,本文主要介绍了Mysql删除几亿条数据表中的部分数据的方法实现,具有一定... 目录1、需求2、方案1. 使用 DELETE 语句分批删除2. 使用 INPLACE ALTER T

Python Dash框架在数据可视化仪表板中的应用与实践记录

《PythonDash框架在数据可视化仪表板中的应用与实践记录》Python的PlotlyDash库提供了一种简便且强大的方式来构建和展示互动式数据仪表板,本篇文章将深入探讨如何使用Dash设计一... 目录python Dash框架在数据可视化仪表板中的应用与实践1. 什么是Plotly Dash?1.1

Redis 中的热点键和数据倾斜示例详解

《Redis中的热点键和数据倾斜示例详解》热点键是指在Redis中被频繁访问的特定键,这些键由于其高访问频率,可能导致Redis服务器的性能问题,尤其是在高并发场景下,本文给大家介绍Redis中的热... 目录Redis 中的热点键和数据倾斜热点键(Hot Key)定义特点应对策略示例数据倾斜(Data S

MySQL中慢SQL优化的不同方式介绍

《MySQL中慢SQL优化的不同方式介绍》慢SQL的优化,主要从两个方面考虑,SQL语句本身的优化,以及数据库设计的优化,下面小编就来给大家介绍一下有哪些方式可以优化慢SQL吧... 目录避免不必要的列分页优化索引优化JOIN 的优化排序优化UNION 优化慢 SQL 的优化,主要从两个方面考虑,SQL 语

Python实现将MySQL中所有表的数据都导出为CSV文件并压缩

《Python实现将MySQL中所有表的数据都导出为CSV文件并压缩》这篇文章主要为大家详细介绍了如何使用Python将MySQL数据库中所有表的数据都导出为CSV文件到一个目录,并压缩为zip文件到... python将mysql数据库中所有表的数据都导出为CSV文件到一个目录,并压缩为zip文件到另一个

SpringBoot整合jasypt实现重要数据加密

《SpringBoot整合jasypt实现重要数据加密》Jasypt是一个专注于简化Java加密操作的开源工具,:本文主要介绍详细介绍了如何使用jasypt实现重要数据加密,感兴趣的小伙伴可... 目录jasypt简介 jasypt的优点SpringBoot使用jasypt创建mapper接口配置文件加密

使用Python高效获取网络数据的操作指南

《使用Python高效获取网络数据的操作指南》网络爬虫是一种自动化程序,用于访问和提取网站上的数据,Python是进行网络爬虫开发的理想语言,拥有丰富的库和工具,使得编写和维护爬虫变得简单高效,本文将... 目录网络爬虫的基本概念常用库介绍安装库Requests和BeautifulSoup爬虫开发发送请求解

C++中函数模板与类模板的简单使用及区别介绍

《C++中函数模板与类模板的简单使用及区别介绍》这篇文章介绍了C++中的模板机制,包括函数模板和类模板的概念、语法和实际应用,函数模板通过类型参数实现泛型操作,而类模板允许创建可处理多种数据类型的类,... 目录一、函数模板定义语法真实示例二、类模板三、关键区别四、注意事项 ‌在C++中,模板是实现泛型编程