【算法每日一练]-结构优化(保姆级教程 篇5 树状数组)POJ3067日本 #POJ3321苹果树 #POJ2352星星 #快排变形

本文主要是介绍【算法每日一练]-结构优化(保姆级教程 篇5 树状数组)POJ3067日本 #POJ3321苹果树 #POJ2352星星 #快排变形,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

今天知识点

求交点转化求逆序对,每次操作都维护一个y点的前缀和

树的变动转化成一维数组的变动,利用时间戳将节点转化成区间

离散化数组来求逆序对数

先将y排序,然后每加入一个就点更新求一次前缀和

POJ3067:日本

        思路:

POJ3321苹果树:

        思路:

快排变形:

        思路:

POJ2352:星星

        思路:


         

        

POJ3067:日本

东海岸有n个城市,西海岸有m个城市,每个海岸的城市从北到南编号为1,2……,每条高速公路都是直线,连接东西海岸的城市。求公路的交叉点数

输入:
1
3 4 4
1 4
2 3
3 2
3 1

        
思路:

根据样例画出草图:按照1 4,2 3,3 1,3 2的顺序去画,很容易发现只要出现逆序对就会产生交点。

定义逆序对:(x1,y1)和(x2,y2)为逆序对,则等价于x1<x2且y1<y2。

所以在画2 3时候产生了一个逆序对,画3 1时候产生了2个逆序对,画 3 2时候也产生了两个逆序对。故最终5个交点。

所以这道题就是求逆序对数。

因为比如两边都同时大于或小于。我们先对x排序(若x相等,则y升序),然后按x的顺序检查每条边,统计y的前缀和,因为当前已经连了i条边,那么y的前缀和数就一定是非逆序对数。所以i减去y的前缀和就是逆序对数。

这道题就变成了每次增加一个元素就前一次对应的前缀和问题。因此我们只需要对每个点y维护一个关于y的前缀。每次操作后都要给对应点y加个1
        

#include <bits/stdc++.h>
using namespace std;
#define maxn 1010
#define maxk 1000010
#define lowbit(x) (x)&(-x)
typedef long long ll;
int c[maxn],kas,n,m,k;
struct edge{int x,y;}e[maxk];bool cmp(edge a,edge b){return a.x<b.x||(a.x==b.x&&a.y<b.y);
}void add(int i){//加1操作,参数省略while(i<=m){++c[i];i+=lowbit(i);}
}int sum(int i){int s=0;while(i>0){s+=c[i];i-=lowbit(i);}return s;
}int main(){int t;cin>>t;while(t--){memset(c,0,sizeof(c));//每个样例都要清空一次树状数组。scanf("%d%d%d",&n,&m,&k);for(int i=0;i<k;i++)scanf("%d%d",&e[i].x,&e[i].y);sort(e,e+k,cmp);//默认升序ll ans=0;for(int i=0;i<k;i++){ans+=i-sum(e[i].y);//累加逆序对add(e[i].y);//加入进去}printf("Test case %d: %lld\n",++kas,ans);}
}

        

        

POJ3321苹果树:

        
一个苹果树上有n个叉,通过分支连接,我们将叉从1到n进行编号,每个叉上最多只会有一个苹果,且苹果树上一开始长满了苹果。
卡卡可能会从树上摘一个苹果,树上的空叉可能又会长出新的苹果。
输入:
第一行n表示叉数。
以下n-1行是两个整数u和v表示之间有叉相连
以下m行表示m条消息
C x表示叉x上的苹果变化了:有过原来有则现在没有,原来没有则现在有了
Q x表示叉x上方子树中的苹果数量,包括x叉上的苹果(如果存在的话)
3
1 2
1 3
3
Q 1
C 2
Q 1

        
思路:

                

我们先把树倒过来,既然要统计每个节点的变动,每变动一次就统计一次不现实。

那就把树所有节点按照dfs顺序映射成一维数组a,再利用时间戳就把求节点孩子问题变成了求时间戳的区间和问题

                
既要统计a的区间和又要考虑到节点的变动,那就创建树状数组c来维护a。节点的变动恰好对应了点更新。

红色代表L,蓝色代表R, 可见每个点的时间戳,不难看出每个节点的R-L就是这个节点的孩子数量

#include <bits/stdc++.h>
#define lowbit(x) (x)&(-x)//求区间长度
using namespace std;
const int maxn=1e5+10;
int n,q;
int c[maxn],a[maxn];
int L[maxn],R[maxn];
int head[maxn];
int cnt,dfn;
struct edge{int u,v,next;}e[2*maxn];void adde(int u,int v){e[++cnt]={u,v,head[u]};head[u]=cnt;}int sum(int i){//求前缀和,int ans=0;for(;i>0;i-=lowbit(i)) ans+=c[i];return ans;
}void add(int i,int val){//在第i点上加val,修改找后继for(;i<=n;i+=lowbit(i)) c[i]+=val;
}void init(){memset(c,0,sizeof(c));memset(L,0,sizeof(L));memset(R,0,sizeof(R));memset(head,0,sizeof(head));cnt=0;dfn=0;//因为深度优先的序列是从1开始的for(int i=1;i<=n;i++)a[i]=1,add(i,1);//a[i]是1表示该分支i上有苹果
}void dfs(int u,int fa){//之所以写fa,是防止走父子边,这样子的话vis就不再需要了L[u]=++dfn;//相当于是时间戳,根节点是1for(int i=head[u];i;i=e[i].next){int v=e[i].v;if(v==fa)continue;dfs(v,u);}R[u]=dfn;//记录时间戳
}int main(){cin>>n;int u,v;init();for(int i=1;i<n;i++){scanf("%d%d",&u,&v);adde(u,v);}	dfs(1,1);cin>>q;char op[10];//之所以定义字符串,就是因为字符型于回车不兼容,所以换成字符串输入不怕回车for(int i=1;i<=q;i++){getchar();scanf("%s %d",op,&v);//不用考虑回车问题if(op[0]=='C'){if(a[L[v]]) add(L[v],-1);else add(L[v],1);a[L[v]]^=1;//0变1,1变0}else{int s1=sum(R[v]);int s2=sum(L[v]-1);printf("%d\n",s1-s2);}}
}

        

      

快排变形:

有n个数,每次通过临项交换来数组中的元素变成升序排列,问需要经过多少次交换?
输入5 4 1 2 999999999   输出5

        
思路:

就是求逆序对数。输入4时有一个逆序对,再输入1有两个,再输入2有两个,再输入99999999有零个。共五个。
因为我们要在输入数时求小于此数前缀和,可以将数值当成下标存入树状数组来求前缀和,但是数值过大就必须离散化处理,把数值变成排名。
比如:5 4 1 2 999999999 变成4 3 1 2 5即可。

方法:先创建一个排序后的暂存数组,然后按每个数的名次进行赋值对原数组修改即可。
        

#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const int maxn=10000;
ll ans,c[maxn];//c[]为树状数组
int n,a[maxn],b[maxn];
int lowbit(int i){	return (-i)&i;}void add(int i,int z){	for(;i<=n;i+=lowbit(i)) c[i]+=z;}ll sum(int i){ll s=0;for(;i>0;i-=lowbit(i)) s+=c[i];return s;
}
int main(){cin>>n;//进行离散化for(int i=1;i<=n;i++)cin>>b[i],a[i]=b[i];sort(b+1,b+1+n);for(int i=1;i<=n;i++)a[i]=lower_bound(b+1,b+1+n,a[i])-b;//开始求前缀和for(int i=1;i<=n;i++){ans+=i-sum(a[i])-1;add(a[i],1);}cout<<ans;	return 0;
}
/*//离散化实例
#include <bits/stdc++.h>
using namespace std;
int a[100],b[100];int main(){int n;cin>>n;for(int i=1;i<=n;i++)cin>>b[i],a[i]=b[i];//实现离散化,把数值变成相对排名,然后数值当成下标存储个数统计前缀和sort(b+1,b+1+n);for(int i=1;i<=n;i++){cout<<a[i]<<' ';a[i]=lower_bound(b+1,b+1+n,a[i])-b;cout<<a[i]<<' '<<'\n';	}
}5
5 4 1 2 999*/

         

         

POJ2352:星星

在平面上有n个星星,每颗星星都有自己的坐标。规定星星的等级数为纵横坐标均不超过自己的星星数量(不包括自己),请输出每个级别的星星数量
输入保证y是递增的,且如果y相等,那么x是递增的。
5
1 1
5 1
7 1
3 3
5 5

        
思路:

看似是二维前缀和,实际上y是排好顺序的,那也就是说只需要按y的顺序计算每个x的前缀和即可。相当于加入一个x就统计一下x的前缀和。
        

#include<bits/stdc++.h>
using namespace std;
#define maxn 32005
#define lowbit(x) (x)&(-x)
int ans[maxn],c[maxn];
int n;void add(int i,int val){while(i<=maxn){c[i]+=val;i+=lowbit(i);}	
}int sum(int i){//统计前缀和int s=0;while(i>0){s+=c[i];i-=lowbit(i);}return s;
}
int main(){cin>>n;int x,y;for(int i=0;i<n;i++){scanf("%d%d",&x,&y);x++;//注意给的坐标x是从0开始的,树状数组的下标必须从0开始,所以都加1ans[sum(x)]++;add(x,1);//x的数量加1}for(int i=0;i<n;i++){//一共最多n-1个等级printf("%d\n",ans[i]);}
}

这篇关于【算法每日一练]-结构优化(保姆级教程 篇5 树状数组)POJ3067日本 #POJ3321苹果树 #POJ2352星星 #快排变形的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/477705

相关文章

python连接本地SQL server详细图文教程

《python连接本地SQLserver详细图文教程》在数据分析领域,经常需要从数据库中获取数据进行分析和处理,下面:本文主要介绍python连接本地SQLserver的相关资料,文中通过代码... 目录一.设置本地账号1.新建用户2.开启双重验证3,开启TCP/IP本地服务二js.python连接实例1.

Python通过模块化开发优化代码的技巧分享

《Python通过模块化开发优化代码的技巧分享》模块化开发就是把代码拆成一个个“零件”,该封装封装,该拆分拆分,下面小编就来和大家简单聊聊python如何用模块化开发进行代码优化吧... 目录什么是模块化开发如何拆分代码改进版:拆分成模块让模块更强大:使用 __init__.py你一定会遇到的问题模www.

Python 安装和配置flask, flask_cors的图文教程

《Python安装和配置flask,flask_cors的图文教程》:本文主要介绍Python安装和配置flask,flask_cors的图文教程,本文通过图文并茂的形式给大家介绍的非常详细,... 目录一.python安装:二,配置环境变量,三:检查Python安装和环境变量,四:安装flask和flas

Spring Security基于数据库的ABAC属性权限模型实战开发教程

《SpringSecurity基于数据库的ABAC属性权限模型实战开发教程》:本文主要介绍SpringSecurity基于数据库的ABAC属性权限模型实战开发教程,本文给大家介绍的非常详细,对大... 目录1. 前言2. 权限决策依据RBACABAC综合对比3. 数据库表结构说明4. 实战开始5. MyBA

springboot+dubbo实现时间轮算法

《springboot+dubbo实现时间轮算法》时间轮是一种高效利用线程资源进行批量化调度的算法,本文主要介绍了springboot+dubbo实现时间轮算法,文中通过示例代码介绍的非常详细,对大家... 目录前言一、参数说明二、具体实现1、HashedwheelTimer2、createWheel3、n

SpringBoot首笔交易慢问题排查与优化方案

《SpringBoot首笔交易慢问题排查与优化方案》在我们的微服务项目中,遇到这样的问题:应用启动后,第一笔交易响应耗时高达4、5秒,而后续请求均能在毫秒级完成,这不仅触发监控告警,也极大影响了用户体... 目录问题背景排查步骤1. 日志分析2. 性能工具定位优化方案:提前预热各种资源1. Flowable

Ubuntu中远程连接Mysql数据库的详细图文教程

《Ubuntu中远程连接Mysql数据库的详细图文教程》Ubuntu是一个以桌面应用为主的Linux发行版操作系统,这篇文章主要为大家详细介绍了Ubuntu中远程连接Mysql数据库的详细图文教程,有... 目录1、版本2、检查有没有mysql2.1 查询是否安装了Mysql包2.2 查看Mysql版本2.

SpringBoot3实现Gzip压缩优化的技术指南

《SpringBoot3实现Gzip压缩优化的技术指南》随着Web应用的用户量和数据量增加,网络带宽和页面加载速度逐渐成为瓶颈,为了减少数据传输量,提高用户体验,我们可以使用Gzip压缩HTTP响应,... 目录1、简述2、配置2.1 添加依赖2.2 配置 Gzip 压缩3、服务端应用4、前端应用4.1 N

Elasticsearch 在 Java 中的使用教程

《Elasticsearch在Java中的使用教程》Elasticsearch是一个分布式搜索和分析引擎,基于ApacheLucene构建,能够实现实时数据的存储、搜索、和分析,它广泛应用于全文... 目录1. Elasticsearch 简介2. 环境准备2.1 安装 Elasticsearch2.2 J

Linux系统中卸载与安装JDK的详细教程

《Linux系统中卸载与安装JDK的详细教程》本文详细介绍了如何在Linux系统中通过Xshell和Xftp工具连接与传输文件,然后进行JDK的安装与卸载,安装步骤包括连接Linux、传输JDK安装包... 目录1、卸载1.1 linux删除自带的JDK1.2 Linux上卸载自己安装的JDK2、安装2.1