Data Mining数据挖掘—5. Association Analysis关联分析

2023-12-10 11:01

本文主要是介绍Data Mining数据挖掘—5. Association Analysis关联分析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

6. Association Analysis

Given a set of records each of which contains some number of items from a given collection.
Produce dependency rules that will predict the occurrence of an item based on occurrences of other items.
Application area: Marketing and Sales Promotion, Content-based recommendation, Customer loyalty programs

Initially used for Market Basket Analysis to find how items purchased by customers are related. Later extended to more complex data structures: sequential patterns and subgraph patterns

6.1 Simple Approach: Pearson’s correlation coefficient

Pearson's correlation coefficient in Association Analysis

correlation not equals to causality

6.2 Definitoin

6.2.1 Frequent Itemset

Frequent Itemset

6.2.2 Association Rule

Association Rule

6.2.3 Evaluation Metrics

Evaluation Metrics

6.3 Associate Rule Mining Task

Given a set of transactions T, the goal of association rule mining is to find all rules having
– support ≥ minsup threshold
– confidence ≥ minconf threshold
minsup and minconf are provided by the user
Brute-force approach
Step1: List all possible association rules
Step2: Compute the support and confidence for each rule
Step3: Remove rules that fail the minsup and minconf thresholds

But Computationally prohibitive due to large number of candidates!

Brute-force Approach

Mining Association Rules

6.4 Apriori Algorithm

Two-step approach
Step1: Frequent Itemset Generation (Generate all itemsets whose support ≥ minsup)
Step2: Rule Generation (Generate high confidence rules from each frequent itemset; where each rule is a binary partitioning of a frequent itemset)

However, frequent itemset generation is still computationally expensive… Given d items, there are 2^d candidate itemsets!

Anti-Monotonicity of Support
Anti-Monotonicity of Support

Steps

  1. Start at k=1
  2. Generate frequent itemsets of length k=1
  3. Repeat until no new frequent itemsets are identified
    1. Generate length (k+1) candidate itemsets from length k frequent itemsets; increase k
    2. Prune candidate itemsets that cannot be frequent because they contain subsets of length k that are infrequent (Apriori Principle)
    3. Count the support of each remaining candidate by scanning the DB
    4. Eliminate candidates that are infrequent, leaving only those that are frequent

Illustrating the Apriori Principle

From Frequent Itemsets to Rules
From Frequent Itemsets to Rules

Challenge: Combinatorial Explosion1
Challenge: Combinatorial Explosion2

Rule Generation

Rule Generation for Apriori Algorithm

Complexity of Apriori Algorithm
Complexity of Apriori Algorithm

6.5 FP-growth Algorithm

usually faster than Apriori, requires at most two passes over the database
Use a compressed representation of the database using an FP-tree
Once an FP-tree has been constructed, it uses a recursive divide-and-conquer approach to mine the frequent itemsets
FP-Tree Construction

FP-Tree Construction

FP-Growth(Summary)

6.6 Interestingness Measures

Interestingness measures can be used to prune or rank the derived rules
In the original formulation of association rules, support & confidence are the only interest measures used
various other measures have been proposed

Drawback of Confidence
Drawback of Confidence1

Drawback of Confidence2

6.6.1 Correlation

Correlation takes into account all data at once.
In our scenario: corr(tea,coffee) = -0.25
i.e., the correlation is negative
Interpretation: people who drink tea are less likely to drink coffee

6.6.2 Lift

Lift1

Lift2

Example: Lift

lift and correlation are symmetric [lift(tea → coffee) = lift(coffee → tea)]
confidence is asymmetric

6.6.3 Others

6.7 Handling Continuous and Categorical Attributes

6.7.1 Handling Categorical Attributes

Transform categorical attribute into asymmetric binary variables. Introduce a new “item” for each distinct attribute-value pair -> one-hot-encoding
Potential Issues
(1) Many attribute values
Many of the attribute values may have very low support
Potential solution: Aggregate the low-support attribute values -> bin for “other”
(2) Highly skewed attribute values
Example: 95% of the visitors have Buy = No
Most of the items will be associated with (Buy=No) item
Potential solution: drop the highly frequent items

6.7.2 Handling Continuous Attributes

Transform continuous attribute into binary variables using discretization:
Equal-width binning & Equal-frequency binning
Issue: Size of the intervals affects support & confidence - Too small intervals: not enough support but Too large intervals: not enough confidence

6.8 Effect of Support Distribution

Many real data sets have a skewed support distribution
How to set the appropriate minsup threshold?
If minsup is set too high, we could miss itemsets involving interesting rare items (e.g., expensive products)
If minsup is set too low, it is computationally expensive and the number of itemsets is very large
Using a single minimum support threshold may not be effective
Multiple Minimum Support
Multiple Minimum Support

6.9 Association Rules with Temporal Components

Association Rules with Temporal Components

6.10 Subgroup Discovery

Association Rule Mining: Find all patterns in the data
Classification: Identify the best patterns that can predict a target variable
Find all patterns that can explain a target variable.
从数据集中发现具有特定属性和特征的子群或子集。这个任务的目标是识别数据中与感兴趣的属性或行为相关的子群,以便更深入地理解数据、做出预测或采取相关行动。在某些情况下,子群发现可以用于生成新的特征,然后将这些特征用于分类任务。
子群发现旨在发现数据中的子群,而分类旨在将数据分为已知的类别。子群发现通常更加探索性,而分类通常更加预测性。
we have strong predictor variables. But we are also interested in the weaker ones

Algorithms
Early algorithms: Learn unpruned decision tree; Extract rule; Compute measures for rules, rate and rank
Newer algorithms: Based on association rule mining; Based on evolutionary algorithms

Rating Rules
Goals: rules should be covering many examples & Accurate
Rules of both high coverage and accuracy are interesting

Subgroup Discovery – Rating Rules

Subgroup Discovery – Metrics
Subgroup Discovery – Metrics

WRacc1

WRacc2

WRacc3

Subgroup Discovery – Summary

6.11 Summary

Association AnalysisApriori & FP-GrowthSubgroup Discovery
discovering patterns in data; patterns are described by rulesFinds rules with minimum support (i.e., number of transactions) and minimum confidence (i.e., strength of the implication)Learn rules for a particular target variable; Create a comprehensive model of a class

这篇关于Data Mining数据挖掘—5. Association Analysis关联分析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/476920

相关文章

Springboot中分析SQL性能的两种方式详解

《Springboot中分析SQL性能的两种方式详解》文章介绍了SQL性能分析的两种方式:MyBatis-Plus性能分析插件和p6spy框架,MyBatis-Plus插件配置简单,适用于开发和测试环... 目录SQL性能分析的两种方式:功能介绍实现方式:实现步骤:SQL性能分析的两种方式:功能介绍记录

最长公共子序列问题的深度分析与Java实现方式

《最长公共子序列问题的深度分析与Java实现方式》本文详细介绍了最长公共子序列(LCS)问题,包括其概念、暴力解法、动态规划解法,并提供了Java代码实现,暴力解法虽然简单,但在大数据处理中效率较低,... 目录最长公共子序列问题概述问题理解与示例分析暴力解法思路与示例代码动态规划解法DP 表的构建与意义动

C#使用DeepSeek API实现自然语言处理,文本分类和情感分析

《C#使用DeepSeekAPI实现自然语言处理,文本分类和情感分析》在C#中使用DeepSeekAPI可以实现多种功能,例如自然语言处理、文本分类、情感分析等,本文主要为大家介绍了具体实现步骤,... 目录准备工作文本生成文本分类问答系统代码生成翻译功能文本摘要文本校对图像描述生成总结在C#中使用Deep

MYSQL关联关系查询方式

《MYSQL关联关系查询方式》文章详细介绍了MySQL中如何使用内连接和左外连接进行表的关联查询,并展示了如何选择列和使用别名,文章还提供了一些关于查询优化的建议,并鼓励读者参考和支持脚本之家... 目录mysql关联关系查询关联关系查询这个查询做了以下几件事MySQL自关联查询总结MYSQL关联关系查询

Redis主从/哨兵机制原理分析

《Redis主从/哨兵机制原理分析》本文介绍了Redis的主从复制和哨兵机制,主从复制实现了数据的热备份和负载均衡,而哨兵机制可以监控Redis集群,实现自动故障转移,哨兵机制通过监控、下线、选举和故... 目录一、主从复制1.1 什么是主从复制1.2 主从复制的作用1.3 主从复制原理1.3.1 全量复制

Redis主从复制的原理分析

《Redis主从复制的原理分析》Redis主从复制通过将数据镜像到多个从节点,实现高可用性和扩展性,主从复制包括初次全量同步和增量同步两个阶段,为优化复制性能,可以采用AOF持久化、调整复制超时时间、... 目录Redis主从复制的原理主从复制概述配置主从复制数据同步过程复制一致性与延迟故障转移机制监控与维

Redis连接失败:客户端IP不在白名单中的问题分析与解决方案

《Redis连接失败:客户端IP不在白名单中的问题分析与解决方案》在现代分布式系统中,Redis作为一种高性能的内存数据库,被广泛应用于缓存、消息队列、会话存储等场景,然而,在实际使用过程中,我们可能... 目录一、问题背景二、错误分析1. 错误信息解读2. 根本原因三、解决方案1. 将客户端IP添加到Re

Redis主从复制实现原理分析

《Redis主从复制实现原理分析》Redis主从复制通过Sync和CommandPropagate阶段实现数据同步,2.8版本后引入Psync指令,根据复制偏移量进行全量或部分同步,优化了数据传输效率... 目录Redis主DodMIK从复制实现原理实现原理Psync: 2.8版本后总结Redis主从复制实

锐捷和腾达哪个好? 两个品牌路由器对比分析

《锐捷和腾达哪个好?两个品牌路由器对比分析》在选择路由器时,Tenda和锐捷都是备受关注的品牌,各自有独特的产品特点和市场定位,选择哪个品牌的路由器更合适,实际上取决于你的具体需求和使用场景,我们从... 在选购路由器时,锐捷和腾达都是市场上备受关注的品牌,但它们的定位和特点却有所不同。锐捷更偏向企业级和专

Spring中Bean有关NullPointerException异常的原因分析

《Spring中Bean有关NullPointerException异常的原因分析》在Spring中使用@Autowired注解注入的bean不能在静态上下文中访问,否则会导致NullPointerE... 目录Spring中Bean有关NullPointerException异常的原因问题描述解决方案总结