OpenCV + CPP 系列(廿三)像素重映射 与 图像扭曲(MLS)

2023-12-09 17:20

本文主要是介绍OpenCV + CPP 系列(廿三)像素重映射 与 图像扭曲(MLS),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

        • 一、重映射简介
          • 效果演示
        • 二、图像扭曲

一、重映射简介

重映射,就是把一幅图像中某位置的像素放置到另一图像指定位置的过程。即:
d s t ( x , y ) = s r c ( x _ m a p ( x , y ) , y _ m a p ( x , y ) ) \mathrm{dst}(x,y) = \mathrm{src}(x\_map(x,y),y\_map(x,y)) dst(x,y)=src(x_map(x,y),y_map(x,y))

在重映射过程中,图像的大小也可以同时发生改变。此时像素与像素之间的关系就不是一一对应关系,因此在重映射过程中,可能会涉及到像素值的插值计算。点击查看边缘处理项

Remap(
InputArray src,       输入图像(灰度图或真彩图均可)
OutputArray dst,       输出图像(要求大小和xmap,ymap相同,通道数目及数据类型和src相同)
InputArray map1,      x 映射表 CV_32FC1/CV_32FC2
InputArray map2,      y 映射表
int interpolation,       选择的插值方法,常见线性插值,可选择立方等
int borderMode,       BORDER_CONSTANT
const Scalar borderValue   color
)

头文件 quick_opencv.h:声明类与公共函数

#pragma once
#include <opencv2\opencv.hpp>
using namespace cv;class QuickDemo {
public:...void remap_Demo(Mat& image1);void MLS(Mat& src, std::vector<Point> p, std::vector<Point> q);void MLS(Mat& src, int* p, int* q, int rows, int cols);
};

主函数调用该类的公共成员函数

#include <opencv2\opencv.hpp>
#include <quick_opencv.h>
#include <iostream>
using namespace cv;int main(int argc, char** argv) {Mat src = imread("D:\\Desktop\\pandas_small22.png");if (src.empty()) {printf("Could not load images...\n");return -1;}QuickDemo qk;qk.remap_Demo(src);vector<Point> p{Point(30, 147), Point(147, 147), Point(268, 147), Point(112, 148),Point(186, 148), Point(98, 316), Point(211, 316)};vector<Point> q{ Point(28, 209), Point(126, 143), Point(282, 26), Point(71, 236), Point(136, 240), Point(79, 313), Point(190, 310)};qk.MLS(src1, p, q);int p_array[7][2] = { {30, 147}, {147, 147}, {268, 147}, {112, 148}, {186, 148}, {98, 316}, {211, 316} };int q_array[7][2] = { {28, 209}, {126, 143}, {282, 26},  {71, 236},  {136, 240}, {79, 313}, {190, 310} };qk.MLS(src1, (int *)p_array, (int*)q_array, 7, 2);waitKey(0);destroyAllWindows();return 0;
}

源文件 quick_demo.cpp:实现类与公共函数

void update_map(Mat& image, int index, Mat& x_map, Mat& y_map) {int height = image.rows;int width = image.cols;double h_41 = height * 0.25;double h_43 = height * 0.75;double w_41 = width * 0.25;double w_43 = width * 0.75;for (int h = 0; h < height; h++) {float* x_ptr = x_map.ptr<float>(h);float* y_ptr = y_map.ptr<float>(h);for (int w = 0; w < width; w++) {switch (index){case 0:if (h > h_41 && h < h_43 && w>w_41 && w < w_43) {*x_ptr++ = 2 * (w - w_41 + 0.5);*y_ptr++ = 2 * (h - h_41 + 0.5);}else{*x_ptr++ = 0;*y_ptr++ = 0;}break;case 1:*x_ptr++ = width - w - 1;*y_ptr++ = h;break;case 2:*x_ptr++ = w;*y_ptr++ = height - h - 1;break;case 3:*x_ptr++ = width - w - 1;*y_ptr++ = height - h - 1;break;}}}}void QuickDemo::remap_Demo(Mat& image) {Mat dst, x_map, y_map;int index = 0;x_map.create(image.size(), CV_32FC1);y_map.create(image.size(), CV_32FC1);int c = 0;while (true){c = waitKey(400);if ((char)c==27){break;}index = c % 4;update_map(image,index, x_map, y_map);remap(image, dst, x_map, y_map, INTER_LINEAR, BORDER_CONSTANT, Scalar(255, 0, 0));imshow("remap", dst);}
}

如上两个函数,update_map,用于更新remap的具体映射方法,remap_Demo为调用函数。

效果演示

运行程序,按键q退出;按键0,1,2,3,4 出现以下结果:
在这里插入图片描述

二、图像扭曲

MLS算法 图像扭曲 Image Deformation Using Moving Least Squares 论文。
最小二乘法(MLS)对图像进行变形 python 实现
在这里插入图片描述
整个算法公式:
f ( v ) = ( v − p ∗ ) ( ∑ i p i ^ T w i p i ^ ) − 1 ∑ j p j ^ T w j p j ^ + q ∗ (1) f(v) = (v-p_*)\left ( \sum_{i}\hat{p_i}^T~w_i~\hat{p_i} \right )^{-1}\sum_{j}\hat{p_j}^T~w_j~\hat{p_j}+ q_* \tag{1} f(v)=(vp)(ipi^T wi pi^)1jpj^T wj pj^+q(1)

其中: v v v 是图像中的点, p p p 是变形前的点, q q q 是变形后的点, w w w 是权重。

w i = 1 ∣ p i − v ∣ 2 α (2) w_i = \frac{1}{|p_i-v|^{2\alpha}} \tag{2} wi=piv2α1(2)

p i p_{i} pi是图像中控制点的点集, v v v 是原图像中的点, α \alpha α在程序中取1。

p ∗ = ∑ i w i p i ∑ i w i ( 3 ) p ^ = p i − p ∗ ( 5 ) q ∗ = ∑ i w i q i ∑ i w i ( 4 ) q ^ = q i − q ∗ ( 6 ) (7) \begin{aligned} p_* =& \frac{\sum_iw_ip_i }{\sum_iw_i} {(3)}  & \hat{p} =& p_i -p_*{(5)}\\ q_* =& \frac{\sum_iw_iq_i }{\sum_iw_i} {(4)}  & \hat{q} =& q_i -q_*{(6)} \end{aligned} \tag{7} p=q=iwiiwipi3  iwiiwiqi4  p^=q^=pip5qiq6 (7)

Point NewPoint(Point V, vector<Point> p, vector<Point> q){vector<float>W;Point p_star, q_star = Point(0, 0);for (int i = 0; i <= p.size() - 1; i++){float temp;if (p[i] == V){temp = INT_MAX;}else{temp = 1.0 / (((p[i].x - V.x) * (p[i].x - V.x)) + ((p[i].y - V.y) * (p[i].y - V.y)));}W.push_back(temp);}float px = 0, py = 0, qx = 0, qy = 0, W_sum = 0;for (int i = 0; i <= W.size() - 1; i++){px += W[i] * p[i].x;py += W[i] * p[i].y;qx += W[i] * q[i].x;qy += W[i] * q[i].y;W_sum += W[i];}p_star.x = px / W_sum;p_star.y = py / W_sum;q_star.x = qx / W_sum;q_star.y = qy / W_sum;vector<Point> p_hat, q_hat;for (int i = 0; i <= p.size() - 1; i++){p_hat.push_back(p[i] - p_star);q_hat.push_back(q[i] - q_star);}Mat pi_hat_t_ = Mat::zeros(2, 1, CV_32FC1);Mat_<float> pi_hat_t = pi_hat_t_;Mat pi_hat_ = Mat::zeros(1, 2, CV_32FC1);Mat_<float> pi_hat = pi_hat_;Mat M_1_ = Mat::zeros(2, 2, CV_32FC1);Mat_<float> M_1 = M_1_;for (int i = 0; i <= p_hat.size() - 1; i++){pi_hat_t.at<float>(0, 0) = p_hat[i].x;pi_hat_t.at<float>(1, 0) = p_hat[i].y;pi_hat.at<float>(0, 0) = p_hat[i].x;pi_hat.at<float>(0, 1) = p_hat[i].y;M_1 += pi_hat_t * W[i] * pi_hat;}Mat_<float> M_1_inv = M_1.inv();M_1 = M_1_inv;Mat pj_hat_t_ = Mat::zeros(2, 1, CV_32FC1);Mat_<float> pj_hat_t = pj_hat_t_;Mat qj_hat_ = Mat::zeros(1, 2, CV_32FC1);Mat_<float> qj_hat = qj_hat_;Mat M_2_ = Mat::zeros(2, 2, CV_32FC1);Mat_<float> M_2 = M_2_;for (int j = 0; j <= q.size() - 1; j++){pj_hat_t.at<float>(0, 0) = p_hat[j].x;pj_hat_t.at<float>(1, 0) = p_hat[j].y;qj_hat.at<float>(0, 0) = q_hat[j].x;qj_hat.at<float>(0, 1) = q_hat[j].y;M_2 += W[j] * pj_hat_t * qj_hat;}Mat_<float> M = M_1 * M_2;//ok//cout << "M = " << M << endl;Point x_p_star = V - p_star;Mat M_x_p_star_ = Mat::zeros(1, 2, CV_32FC1);Mat_<float> M_x_p_star = M_x_p_star_;M_x_p_star.at<float>(0, 0) = x_p_star.x;M_x_p_star.at<float>(0, 1) = x_p_star.y;Mat M_q_star_ = Mat::zeros(1, 2, CV_32FC1);Mat_<float> M_q_star = M_q_star_;M_q_star.at<float>(0, 0) = q_star.x;M_q_star.at<float>(0, 1) = q_star.y;Mat_<float> Lv = M_x_p_star * M + M_q_star;return Point(Lv.at<float>(0, 0), Lv.at<float>(0, 1));
}void QuickDemo::MLS(Mat& src, std::vector<Point> p, std::vector<Point> q){double time0 = static_cast<double>(getTickCount());Mat dst = Mat::zeros(src.rows, src.cols, CV_8UC3);for (int i = 0; i < src.rows; i++){for (int j = 0; j < src.cols; j++){Point old = Point(j, i);Point new_point = NewPoint(old, p, q);//cout << "old = " << old << "\tnew  = " << new_point << endl;dst.at<Vec3b>(i, j) = src.at<Vec3b>(abs(new_point.y), abs(new_point.x));}}double time1 = static_cast<double>(getTickCount());cout << "Total cost time is " << ((time1 - time0) / getTickFrequency()) << "seconds" << endl;imshow("dst_msl", dst);
}

重载函数

Point NewPoint(Point V, float* W, int* p, int* q , float* p_hat, float* q_hat, int rows, int cols) {Point p_star, q_star = Point(0, 0);float temp = 0;float px = 0, py = 0, qx = 0, qy = 0, W_sum = 0;for (int i = 0; i < rows; i++) {int p_0 = *(p + i * cols);int p_1 = *(p + i * cols + 1);if (!(p_0 == V.x && p_1 == V.y)) {temp = 1.0 / (((p_0 - V.x) * (p_0 - V.x)) + ((p_1 - V.y) * (p_1 - V.y)));}else {temp = INT_MAX;}W[i] = temp;px += temp * p_0;py += temp * p_1;qx += temp * (*(q + i * cols));qy += temp * (*(q + i * cols + 1));W_sum += temp;}p_star.x = px / W_sum;p_star.y = py / W_sum;q_star.x = qx / W_sum;q_star.y = qy / W_sum;for (int i = 0; i < rows; i++) {*(p_hat + i * cols) = *(p + i * cols) - p_star.x;*(p_hat + i * cols + 1) = *(p + i * cols + 1) - p_star.y;*(q_hat + i * cols) = *(q + i * cols) - p_star.x;*(q_hat + i * cols + 1) = *(q + i * cols + 1) - p_star.y;}// ====================================Mat pi_hat_t_ = Mat::zeros(2, 1, CV_32FC1);Mat_<float> pi_hat_t = pi_hat_t_;Mat pi_hat_ = Mat::zeros(1, 2, CV_32FC1);Mat_<float> pi_hat = pi_hat_;Mat M_1_ = Mat::zeros(2, 2, CV_32FC1);Mat_<float> M_1 = M_1_;// ====================================Mat pj_hat_t_ = Mat::zeros(2, 1, CV_32FC1);Mat_<float> pj_hat_t = pj_hat_t_;Mat qj_hat_ = Mat::zeros(1, 2, CV_32FC1);Mat_<float> qj_hat = qj_hat_;Mat M_2_ = Mat::zeros(2, 2, CV_32FC1);Mat_<float> M_2 = M_2_;// ====================================for (int i = 0; i < rows; i++) {float p_hat_x = *(p_hat + i * cols);float p_hat_y = *(p_hat + i * cols + 1);pi_hat_t.at<float>(0, 0) = p_hat_x;pi_hat_t.at<float>(1, 0) = p_hat_y;pi_hat.at<float>(0, 0) = p_hat_x;pi_hat.at<float>(0, 1) = p_hat_y;M_1 += pi_hat_t * W[i] * pi_hat;pj_hat_t.at<float>(0, 0) = p_hat_x;pj_hat_t.at<float>(1, 0) = p_hat_y;qj_hat.at<float>(0, 0) = *(q_hat + i * cols);qj_hat.at<float>(0, 1) = *(q_hat + i * cols + 1);M_2 += pj_hat_t * W[i] * qj_hat;}Mat_<float> M_1_inv = M_1.inv();M_1 = M_1_inv;Mat_<float> M = M_1 * M_2;//=====================================//// 	  如下为总公式计算////======================================Point x_p_star = V - p_star;Mat M_x_p_star_ = Mat::zeros(1, 2, CV_32FC1);Mat_<float> M_x_p_star = M_x_p_star_;M_x_p_star.at<float>(0, 0) = x_p_star.x;M_x_p_star.at<float>(0, 1) = x_p_star.y;Mat M_q_star_ = Mat::zeros(1, 2, CV_32FC1);Mat_<float> M_q_star = M_q_star_;M_q_star.at<float>(0, 0) = q_star.x;M_q_star.at<float>(0, 1) = q_star.y;Mat_<float> Lv = M_x_p_star * M + M_q_star;return Point(Lv.at<float>(0, 0), Lv.at<float>(0, 1));}void QuickDemo::MLS(Mat& src, int* p, int* q, int rows, int cols) {double time0 = static_cast<double>(getTickCount());Mat dst = Mat::zeros(src.rows, src.cols, CV_8UC3);assert(7 == rows);               // 若断言失败请修改如下三个数组的长度为rowsfloat W[7] = { 0 };              // 权重长度为p数组长度:rows=7float p_hat[7][2] = { 0 };       // p_hat长度为p数组长度:rows=7float q_hat[7][2] = { 0 };       // q_hat长度为p数组长度:rows=7for (int i = 0; i < src.rows; i++) {for (int j = 0; j < src.cols; j++) {Point new_point = NewPoint(Point(j, i), W, p, q, (float*)p_hat, (float*)p_hat, rows, cols);//cout << "old = " << old << "\tnew  = " << new_point << endl;dst.at<Vec3b>(i, j) = src.at<Vec3b>(abs(new_point.y), abs(new_point.x));//cout << "src.at<uchar> = " << src.at<Vec3b>(new_point.y,new_point.x) << endl;}}double time1 = static_cast<double>(getTickCount());cout << "Total cost time is " << ((time1 - time0) / getTickFrequency()) << "seconds" << endl;imshow("dst_msl", dst);
}

重载后,就快了100~180ms,然并卵。
效果图:
在这里插入图片描述
鸣谢与拓展阅读:
使用范例 记录四图像处理之瘦脸 MLS算法 C++实现
OpenCV局部变形算法探究
基于移动最小二乘(MLS)的图像扭曲刚性变形python实现
使用重映射实现图像的局部扭曲 来实现 图像增强。

这篇关于OpenCV + CPP 系列(廿三)像素重映射 与 图像扭曲(MLS)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/474505

相关文章

Spring Security 从入门到进阶系列教程

Spring Security 入门系列 《保护 Web 应用的安全》 《Spring-Security-入门(一):登录与退出》 《Spring-Security-入门(二):基于数据库验证》 《Spring-Security-入门(三):密码加密》 《Spring-Security-入门(四):自定义-Filter》 《Spring-Security-入门(五):在 Sprin

基于人工智能的图像分类系统

目录 引言项目背景环境准备 硬件要求软件安装与配置系统设计 系统架构关键技术代码示例 数据预处理模型训练模型预测应用场景结论 1. 引言 图像分类是计算机视觉中的一个重要任务,目标是自动识别图像中的对象类别。通过卷积神经网络(CNN)等深度学习技术,我们可以构建高效的图像分类系统,广泛应用于自动驾驶、医疗影像诊断、监控分析等领域。本文将介绍如何构建一个基于人工智能的图像分类系统,包括环境

使用opencv优化图片(画面变清晰)

文章目录 需求影响照片清晰度的因素 实现降噪测试代码 锐化空间锐化Unsharp Masking频率域锐化对比测试 对比度增强常用算法对比测试 需求 对图像进行优化,使其看起来更清晰,同时保持尺寸不变,通常涉及到图像处理技术如锐化、降噪、对比度增强等 影响照片清晰度的因素 影响照片清晰度的因素有很多,主要可以从以下几个方面来分析 1. 拍摄设备 相机传感器:相机传

科研绘图系列:R语言扩展物种堆积图(Extended Stacked Barplot)

介绍 R语言的扩展物种堆积图是一种数据可视化工具,它不仅展示了物种的堆积结果,还整合了不同样本分组之间的差异性分析结果。这种图形表示方法能够直观地比较不同物种在各个分组中的显著性差异,为研究者提供了一种有效的数据解读方式。 加载R包 knitr::opts_chunk$set(warning = F, message = F)library(tidyverse)library(phyl

【生成模型系列(初级)】嵌入(Embedding)方程——自然语言处理的数学灵魂【通俗理解】

【通俗理解】嵌入(Embedding)方程——自然语言处理的数学灵魂 关键词提炼 #嵌入方程 #自然语言处理 #词向量 #机器学习 #神经网络 #向量空间模型 #Siri #Google翻译 #AlexNet 第一节:嵌入方程的类比与核心概念【尽可能通俗】 嵌入方程可以被看作是自然语言处理中的“翻译机”,它将文本中的单词或短语转换成计算机能够理解的数学形式,即向量。 正如翻译机将一种语言

opencv 滚动条

参数介绍:createTrackbar( trackbarname , "hello" , &alpha_slider ,alpha_max ,  on_trackbar )  ;在标签中显示的文字(提示滑动条的用途) TrackbarName创建的滑动条要放置窗体的名字 “hello”滑动条的取值范围从 0 到 alpha_max (最小值只能为 zero).滑动后的值存放在

android-opencv-jni

//------------------start opencv--------------------@Override public void onResume(){ super.onResume(); //通过OpenCV引擎服务加载并初始化OpenCV类库,所谓OpenCV引擎服务即是 //OpenCV_2.4.3.2_Manager_2.4_*.apk程序包,存

flume系列之:查看flume系统日志、查看统计flume日志类型、查看flume日志

遍历指定目录下多个文件查找指定内容 服务器系统日志会记录flume相关日志 cat /var/log/messages |grep -i oom 查找系统日志中关于flume的指定日志 import osdef search_string_in_files(directory, search_string):count = 0

GPT系列之:GPT-1,GPT-2,GPT-3详细解读

一、GPT1 论文:Improving Language Understanding by Generative Pre-Training 链接:https://cdn.openai.com/research-covers/languageunsupervised/language_understanding_paper.pdf 启发点:生成loss和微调loss同时作用,让下游任务来适应预训

OpenCV结构分析与形状描述符(11)椭圆拟合函数fitEllipse()的使用

操作系统:ubuntu22.04 OpenCV版本:OpenCV4.9 IDE:Visual Studio Code 编程语言:C++11 算法描述 围绕一组2D点拟合一个椭圆。 该函数计算出一个椭圆,该椭圆在最小二乘意义上最好地拟合一组2D点。它返回一个内切椭圆的旋转矩形。使用了由[90]描述的第一个算法。开发者应该注意,由于数据点靠近包含的 Mat 元素的边界,返回的椭圆/旋转矩形数据