本文主要是介绍OpenCV + CPP 系列(廿三)像素重映射 与 图像扭曲(MLS),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
文章目录
- 一、重映射简介
- 效果演示
- 二、图像扭曲
一、重映射简介
重映射,就是把一幅图像中某位置的像素放置到另一图像指定位置的过程。即:
d s t ( x , y ) = s r c ( x _ m a p ( x , y ) , y _ m a p ( x , y ) ) \mathrm{dst}(x,y) = \mathrm{src}(x\_map(x,y),y\_map(x,y)) dst(x,y)=src(x_map(x,y),y_map(x,y))
在重映射过程中,图像的大小也可以同时发生改变。此时像素与像素之间的关系就不是一一对应关系,因此在重映射过程中,可能会涉及到像素值的插值计算。点击查看边缘处理项
- Remap(
- InputArray src, 输入图像(灰度图或真彩图均可)
OutputArray dst, 输出图像(要求大小和xmap,ymap相同,通道数目及数据类型和src相同)
InputArray map1, x 映射表 CV_32FC1/CV_32FC2
InputArray map2, y 映射表
int interpolation, 选择的插值方法,常见线性插值,可选择立方等
int borderMode, BORDER_CONSTANT
const Scalar borderValue color
)
头文件 quick_opencv.h:声明类与公共函数
#pragma once
#include <opencv2\opencv.hpp>
using namespace cv;class QuickDemo {
public:...void remap_Demo(Mat& image1);void MLS(Mat& src, std::vector<Point> p, std::vector<Point> q);void MLS(Mat& src, int* p, int* q, int rows, int cols);
};
主函数调用该类的公共成员函数
#include <opencv2\opencv.hpp>
#include <quick_opencv.h>
#include <iostream>
using namespace cv;int main(int argc, char** argv) {Mat src = imread("D:\\Desktop\\pandas_small22.png");if (src.empty()) {printf("Could not load images...\n");return -1;}QuickDemo qk;qk.remap_Demo(src);vector<Point> p{Point(30, 147), Point(147, 147), Point(268, 147), Point(112, 148),Point(186, 148), Point(98, 316), Point(211, 316)};vector<Point> q{ Point(28, 209), Point(126, 143), Point(282, 26), Point(71, 236), Point(136, 240), Point(79, 313), Point(190, 310)};qk.MLS(src1, p, q);int p_array[7][2] = { {30, 147}, {147, 147}, {268, 147}, {112, 148}, {186, 148}, {98, 316}, {211, 316} };int q_array[7][2] = { {28, 209}, {126, 143}, {282, 26}, {71, 236}, {136, 240}, {79, 313}, {190, 310} };qk.MLS(src1, (int *)p_array, (int*)q_array, 7, 2);waitKey(0);destroyAllWindows();return 0;
}
源文件 quick_demo.cpp:实现类与公共函数
void update_map(Mat& image, int index, Mat& x_map, Mat& y_map) {int height = image.rows;int width = image.cols;double h_41 = height * 0.25;double h_43 = height * 0.75;double w_41 = width * 0.25;double w_43 = width * 0.75;for (int h = 0; h < height; h++) {float* x_ptr = x_map.ptr<float>(h);float* y_ptr = y_map.ptr<float>(h);for (int w = 0; w < width; w++) {switch (index){case 0:if (h > h_41 && h < h_43 && w>w_41 && w < w_43) {*x_ptr++ = 2 * (w - w_41 + 0.5);*y_ptr++ = 2 * (h - h_41 + 0.5);}else{*x_ptr++ = 0;*y_ptr++ = 0;}break;case 1:*x_ptr++ = width - w - 1;*y_ptr++ = h;break;case 2:*x_ptr++ = w;*y_ptr++ = height - h - 1;break;case 3:*x_ptr++ = width - w - 1;*y_ptr++ = height - h - 1;break;}}}}void QuickDemo::remap_Demo(Mat& image) {Mat dst, x_map, y_map;int index = 0;x_map.create(image.size(), CV_32FC1);y_map.create(image.size(), CV_32FC1);int c = 0;while (true){c = waitKey(400);if ((char)c==27){break;}index = c % 4;update_map(image,index, x_map, y_map);remap(image, dst, x_map, y_map, INTER_LINEAR, BORDER_CONSTANT, Scalar(255, 0, 0));imshow("remap", dst);}
}
如上两个函数,update_map,用于更新remap的具体映射方法,remap_Demo为调用函数。
效果演示
运行程序,按键q退出;按键0,1,2,3,4 出现以下结果:
二、图像扭曲
MLS算法 图像扭曲 Image Deformation Using Moving Least Squares 论文。
最小二乘法(MLS)对图像进行变形 python 实现
整个算法公式:
f ( v ) = ( v − p ∗ ) ( ∑ i p i ^ T w i p i ^ ) − 1 ∑ j p j ^ T w j p j ^ + q ∗ (1) f(v) = (v-p_*)\left ( \sum_{i}\hat{p_i}^T~w_i~\hat{p_i} \right )^{-1}\sum_{j}\hat{p_j}^T~w_j~\hat{p_j}+ q_* \tag{1} f(v)=(v−p∗)(i∑pi^T wi pi^)−1j∑pj^T wj pj^+q∗(1)
其中: v v v 是图像中的点, p p p 是变形前的点, q q q 是变形后的点, w w w 是权重。
w i = 1 ∣ p i − v ∣ 2 α (2) w_i = \frac{1}{|p_i-v|^{2\alpha}} \tag{2} wi=∣pi−v∣2α1(2)
p i p_{i} pi是图像中控制点的点集, v v v 是原图像中的点, α \alpha α在程序中取1。
p ∗ = ∑ i w i p i ∑ i w i ( 3 ) p ^ = p i − p ∗ ( 5 ) q ∗ = ∑ i w i q i ∑ i w i ( 4 ) q ^ = q i − q ∗ ( 6 ) (7) \begin{aligned} p_* =& \frac{\sum_iw_ip_i }{\sum_iw_i} {(3)} & \hat{p} =& p_i -p_*{(5)}\\ q_* =& \frac{\sum_iw_iq_i }{\sum_iw_i} {(4)} & \hat{q} =& q_i -q_*{(6)} \end{aligned} \tag{7} p∗=q∗=∑iwi∑iwipi(3) ∑iwi∑iwiqi(4) p^=q^=pi−p∗(5)qi−q∗(6) (7)
Point NewPoint(Point V, vector<Point> p, vector<Point> q){vector<float>W;Point p_star, q_star = Point(0, 0);for (int i = 0; i <= p.size() - 1; i++){float temp;if (p[i] == V){temp = INT_MAX;}else{temp = 1.0 / (((p[i].x - V.x) * (p[i].x - V.x)) + ((p[i].y - V.y) * (p[i].y - V.y)));}W.push_back(temp);}float px = 0, py = 0, qx = 0, qy = 0, W_sum = 0;for (int i = 0; i <= W.size() - 1; i++){px += W[i] * p[i].x;py += W[i] * p[i].y;qx += W[i] * q[i].x;qy += W[i] * q[i].y;W_sum += W[i];}p_star.x = px / W_sum;p_star.y = py / W_sum;q_star.x = qx / W_sum;q_star.y = qy / W_sum;vector<Point> p_hat, q_hat;for (int i = 0; i <= p.size() - 1; i++){p_hat.push_back(p[i] - p_star);q_hat.push_back(q[i] - q_star);}Mat pi_hat_t_ = Mat::zeros(2, 1, CV_32FC1);Mat_<float> pi_hat_t = pi_hat_t_;Mat pi_hat_ = Mat::zeros(1, 2, CV_32FC1);Mat_<float> pi_hat = pi_hat_;Mat M_1_ = Mat::zeros(2, 2, CV_32FC1);Mat_<float> M_1 = M_1_;for (int i = 0; i <= p_hat.size() - 1; i++){pi_hat_t.at<float>(0, 0) = p_hat[i].x;pi_hat_t.at<float>(1, 0) = p_hat[i].y;pi_hat.at<float>(0, 0) = p_hat[i].x;pi_hat.at<float>(0, 1) = p_hat[i].y;M_1 += pi_hat_t * W[i] * pi_hat;}Mat_<float> M_1_inv = M_1.inv();M_1 = M_1_inv;Mat pj_hat_t_ = Mat::zeros(2, 1, CV_32FC1);Mat_<float> pj_hat_t = pj_hat_t_;Mat qj_hat_ = Mat::zeros(1, 2, CV_32FC1);Mat_<float> qj_hat = qj_hat_;Mat M_2_ = Mat::zeros(2, 2, CV_32FC1);Mat_<float> M_2 = M_2_;for (int j = 0; j <= q.size() - 1; j++){pj_hat_t.at<float>(0, 0) = p_hat[j].x;pj_hat_t.at<float>(1, 0) = p_hat[j].y;qj_hat.at<float>(0, 0) = q_hat[j].x;qj_hat.at<float>(0, 1) = q_hat[j].y;M_2 += W[j] * pj_hat_t * qj_hat;}Mat_<float> M = M_1 * M_2;//ok//cout << "M = " << M << endl;Point x_p_star = V - p_star;Mat M_x_p_star_ = Mat::zeros(1, 2, CV_32FC1);Mat_<float> M_x_p_star = M_x_p_star_;M_x_p_star.at<float>(0, 0) = x_p_star.x;M_x_p_star.at<float>(0, 1) = x_p_star.y;Mat M_q_star_ = Mat::zeros(1, 2, CV_32FC1);Mat_<float> M_q_star = M_q_star_;M_q_star.at<float>(0, 0) = q_star.x;M_q_star.at<float>(0, 1) = q_star.y;Mat_<float> Lv = M_x_p_star * M + M_q_star;return Point(Lv.at<float>(0, 0), Lv.at<float>(0, 1));
}void QuickDemo::MLS(Mat& src, std::vector<Point> p, std::vector<Point> q){double time0 = static_cast<double>(getTickCount());Mat dst = Mat::zeros(src.rows, src.cols, CV_8UC3);for (int i = 0; i < src.rows; i++){for (int j = 0; j < src.cols; j++){Point old = Point(j, i);Point new_point = NewPoint(old, p, q);//cout << "old = " << old << "\tnew = " << new_point << endl;dst.at<Vec3b>(i, j) = src.at<Vec3b>(abs(new_point.y), abs(new_point.x));}}double time1 = static_cast<double>(getTickCount());cout << "Total cost time is " << ((time1 - time0) / getTickFrequency()) << "seconds" << endl;imshow("dst_msl", dst);
}
重载函数
Point NewPoint(Point V, float* W, int* p, int* q , float* p_hat, float* q_hat, int rows, int cols) {Point p_star, q_star = Point(0, 0);float temp = 0;float px = 0, py = 0, qx = 0, qy = 0, W_sum = 0;for (int i = 0; i < rows; i++) {int p_0 = *(p + i * cols);int p_1 = *(p + i * cols + 1);if (!(p_0 == V.x && p_1 == V.y)) {temp = 1.0 / (((p_0 - V.x) * (p_0 - V.x)) + ((p_1 - V.y) * (p_1 - V.y)));}else {temp = INT_MAX;}W[i] = temp;px += temp * p_0;py += temp * p_1;qx += temp * (*(q + i * cols));qy += temp * (*(q + i * cols + 1));W_sum += temp;}p_star.x = px / W_sum;p_star.y = py / W_sum;q_star.x = qx / W_sum;q_star.y = qy / W_sum;for (int i = 0; i < rows; i++) {*(p_hat + i * cols) = *(p + i * cols) - p_star.x;*(p_hat + i * cols + 1) = *(p + i * cols + 1) - p_star.y;*(q_hat + i * cols) = *(q + i * cols) - p_star.x;*(q_hat + i * cols + 1) = *(q + i * cols + 1) - p_star.y;}// ====================================Mat pi_hat_t_ = Mat::zeros(2, 1, CV_32FC1);Mat_<float> pi_hat_t = pi_hat_t_;Mat pi_hat_ = Mat::zeros(1, 2, CV_32FC1);Mat_<float> pi_hat = pi_hat_;Mat M_1_ = Mat::zeros(2, 2, CV_32FC1);Mat_<float> M_1 = M_1_;// ====================================Mat pj_hat_t_ = Mat::zeros(2, 1, CV_32FC1);Mat_<float> pj_hat_t = pj_hat_t_;Mat qj_hat_ = Mat::zeros(1, 2, CV_32FC1);Mat_<float> qj_hat = qj_hat_;Mat M_2_ = Mat::zeros(2, 2, CV_32FC1);Mat_<float> M_2 = M_2_;// ====================================for (int i = 0; i < rows; i++) {float p_hat_x = *(p_hat + i * cols);float p_hat_y = *(p_hat + i * cols + 1);pi_hat_t.at<float>(0, 0) = p_hat_x;pi_hat_t.at<float>(1, 0) = p_hat_y;pi_hat.at<float>(0, 0) = p_hat_x;pi_hat.at<float>(0, 1) = p_hat_y;M_1 += pi_hat_t * W[i] * pi_hat;pj_hat_t.at<float>(0, 0) = p_hat_x;pj_hat_t.at<float>(1, 0) = p_hat_y;qj_hat.at<float>(0, 0) = *(q_hat + i * cols);qj_hat.at<float>(0, 1) = *(q_hat + i * cols + 1);M_2 += pj_hat_t * W[i] * qj_hat;}Mat_<float> M_1_inv = M_1.inv();M_1 = M_1_inv;Mat_<float> M = M_1 * M_2;//=====================================//// 如下为总公式计算////======================================Point x_p_star = V - p_star;Mat M_x_p_star_ = Mat::zeros(1, 2, CV_32FC1);Mat_<float> M_x_p_star = M_x_p_star_;M_x_p_star.at<float>(0, 0) = x_p_star.x;M_x_p_star.at<float>(0, 1) = x_p_star.y;Mat M_q_star_ = Mat::zeros(1, 2, CV_32FC1);Mat_<float> M_q_star = M_q_star_;M_q_star.at<float>(0, 0) = q_star.x;M_q_star.at<float>(0, 1) = q_star.y;Mat_<float> Lv = M_x_p_star * M + M_q_star;return Point(Lv.at<float>(0, 0), Lv.at<float>(0, 1));}void QuickDemo::MLS(Mat& src, int* p, int* q, int rows, int cols) {double time0 = static_cast<double>(getTickCount());Mat dst = Mat::zeros(src.rows, src.cols, CV_8UC3);assert(7 == rows); // 若断言失败请修改如下三个数组的长度为rowsfloat W[7] = { 0 }; // 权重长度为p数组长度:rows=7float p_hat[7][2] = { 0 }; // p_hat长度为p数组长度:rows=7float q_hat[7][2] = { 0 }; // q_hat长度为p数组长度:rows=7for (int i = 0; i < src.rows; i++) {for (int j = 0; j < src.cols; j++) {Point new_point = NewPoint(Point(j, i), W, p, q, (float*)p_hat, (float*)p_hat, rows, cols);//cout << "old = " << old << "\tnew = " << new_point << endl;dst.at<Vec3b>(i, j) = src.at<Vec3b>(abs(new_point.y), abs(new_point.x));//cout << "src.at<uchar> = " << src.at<Vec3b>(new_point.y,new_point.x) << endl;}}double time1 = static_cast<double>(getTickCount());cout << "Total cost time is " << ((time1 - time0) / getTickFrequency()) << "seconds" << endl;imshow("dst_msl", dst);
}
重载后,就快了100~180ms,然并卵。
效果图:
鸣谢与拓展阅读:
使用范例 记录四图像处理之瘦脸 MLS算法 C++实现
OpenCV局部变形算法探究
基于移动最小二乘(MLS)的图像扭曲刚性变形python实现
使用重映射实现图像的局部扭曲 来实现 图像增强。
这篇关于OpenCV + CPP 系列(廿三)像素重映射 与 图像扭曲(MLS)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!