pytorch中五种常用随机矩阵构造方法:rand、randn、randn_like、randint、randperm

本文主要是介绍pytorch中五种常用随机矩阵构造方法:rand、randn、randn_like、randint、randperm,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1 torch.rand:构造均匀分布张量

torch.rand是用于生成均匀随机分布张量的函数,从区间[0,1)的均匀分布中随机抽取一个随机数生成一个张量,其调用方法如下所示:

torch.rand(sizes, out=None) ➡️ Tensor

参数:

  • sizes:用于定义输出张量的形状

示例代码:

import torch# 生成一个每个元素服从0-1均匀分布的4行3列随机张量
random_tensor = torch.rand(4, 3)
print('tensor:', random_tensor)
print('type:', random_tensor.type())
print('shape:', random_tensor.shape)

运行代码显示:

tensor: tensor([[0.4349, 0.8567, 0.7321],[0.4057, 0.0222, 0.3444],[0.9679, 0.0980, 0.8152],[0.1998, 0.7888, 0.5478]])
type: torch.FloatTensor
shape: torch.Size([4, 3])

2 torch.randn:构造标准正态分布张量

torch.randn()是用于生成正态随机分布张量的函数,从标准正态分布中随机抽取一个随机数生成一个张量,其调用方法如下所示:

torch.randn(sizes, out=None) ➡️ Tensor

参数:

  • sizes:用于定义输出张量的形状

示例代码:

import torch# 生成一个每个元素均为标准正态分布的4行3列随机张量
random_tensor = torch.randn(4, 3)
print('tensor:', random_tensor)
print('type:', random_tensor.type())
print('shape:', random_tensor.shape)

运行代码显示:

tensor: tensor([[ 0.7776,  0.6305,  0.1961],[ 0.1831, -0.4187,  0.1245],[ 0.3092, -1.0463, -0.6656],[-1.0098,  1.3861, -0.2600]])
type: torch.FloatTensor
shape: torch.Size([4, 3])

3 torch.randn_like:构造与输入形状相同正态分布张量

torch.randn_like()用于生成一个与输入张量大小相同的张量,其中填充了均值为 0 方差为 1 的正态分布的随机值,其调用方法如下所示:

torch.randn_like(input_tensor, dtype=None, layout=None, device=None, requires_grad=False) ➡️ Tensor

参数:

  • input_tensor(必需)- 其大小将用于生成输出张量的输入张量。

  • dtype(可选)- 输出张量所需的数据类型。默认为None,这意味着将使用输入张量的数据类型。

  • layout(可选)- 输出张量所需的内存布局。默认为None,这意味着将使用输入张量的内存布局。

  • device(可选)- 输出张量所需的设备。默认为None,这意味着将使用输入张量的设备。

  • requires_grad(可选)- 输出张量是否应该在反向传播期间计算其梯度。默认为False。

示例代码:

import torch# 生成一个每个元素均为标准正态分布的4行3列随机张量
tensor_x = torch.randn(4, 3)
tensor_y = torch.randn_like(tensor_x)print('tensor_x:', tensor_x)
print('type:', tensor_x.type())
print('shape:', tensor_x.shape)print('tensor_y:', tensor_y)
print('type:', tensor_y.type())
print('shape:', tensor_y.shape)

运行代码显示:

tensor_x: tensor([[ 5.5292e-01,  6.5111e-01, -6.0329e-04],[ 1.0402e+00, -7.4630e-01,  7.5701e-01],[ 8.8160e-02, -1.2581e+00, -1.8089e-01],[-4.2769e-01, -8.5043e-01, -5.8388e-01]])
type: torch.FloatTensor
shape: torch.Size([4, 3])
tensor_y: tensor([[ 0.2308,  0.3297, -0.6633],[ 1.7389,  0.6372, -1.1069],[-0.2415, -0.8585,  0.3343],[-1.2581, -0.5001,  0.0317]])
type: torch.FloatTensor
shape: torch.Size([4, 3])

4 torch.randint:构造区间分布张量

torch.randint()是用于生成任意区间分布张量的函数,从标准正态分布中随机抽取一个随机数生成一个张量,其调用方法如下所示:

torch.randint(low=0, high, sizes, out=None) ➡️ Tensor

参数:

  • low~high:随机数的区间范围

  • sizes:用于定义输出张量的形状

示例代码:

import torch# 生成一个每个元素均为[1-10]均匀分布的4行3列随机张量
tensor_int = torch.randint(1, 10, (4, 3))
print('tensor_int:', tensor_int)
print('type:', tensor_int.type())
print('shape:', tensor_int.shape)

运行代码显示:

tensor_int: tensor([[1, 7, 1],[3, 8, 7],[5, 2, 1],[5, 3, 6]])
type: torch.LongTensor
shape: torch.Size([4, 3])

5 torch.randperm:根据生成的随机序号对张量进行随机排序

torch.randint()是用于对张量序号进行随机排序的函数,根据生成的随机序列进行随机排序,其调用格式如下所示:

torch.randperm(n, out=None, dtype=torch.int64) ➡️ LongTensor

参数:

  • n:一个整数,可以理解为张量某个方向的维度

  • dtype:返回的数据类型(torch.int64

示例代码:

import torch# 生成一个0~3的随机整数排序
idx = torch.randperm(4)# 生成一个4行3列的张量
tensor_4 = torch.Tensor(4, 3)# 为了方便对比,首先输出tensor_4的结果
print("原始张量\n", tensor_4)# 下面输出随机生成的行序号
print("\n生成的随机序号\n", idx)# 下面的指令实现了在行的方向上,对tensor_4进行随机排序,并输出结果
print("\n随机排序后的张量\n", tensor_4[idx])

运行代码显示:

原始张量tensor([[0., 0., 0.],[0., 0., 0.],[0., 0., 0.],[0., 0., 0.]])生成的随机序号tensor([3, 0, 2, 1])随机排序后的张量tensor([[0., 0., 0.],[0., 0., 0.],[0., 0., 0.],[0., 0., 0.]])

这篇关于pytorch中五种常用随机矩阵构造方法:rand、randn、randn_like、randint、randperm的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/473011

相关文章

Python中随机休眠技术原理与应用详解

《Python中随机休眠技术原理与应用详解》在编程中,让程序暂停执行特定时间是常见需求,当需要引入不确定性时,随机休眠就成为关键技巧,下面我们就来看看Python中随机休眠技术的具体实现与应用吧... 目录引言一、实现原理与基础方法1.1 核心函数解析1.2 基础实现模板1.3 整数版实现二、典型应用场景2

Linux上设置Ollama服务配置(常用环境变量)

《Linux上设置Ollama服务配置(常用环境变量)》本文主要介绍了Linux上设置Ollama服务配置(常用环境变量),Ollama提供了多种环境变量供配置,如调试模式、模型目录等,下面就来介绍一... 目录在 linux 上设置环境变量配置 OllamPOgxSRJfa手动安装安装特定版本查看日志在

Java常用注解扩展对比举例详解

《Java常用注解扩展对比举例详解》:本文主要介绍Java常用注解扩展对比的相关资料,提供了丰富的代码示例,并总结了最佳实践建议,帮助开发者更好地理解和应用这些注解,需要的朋友可以参考下... 目录一、@Controller 与 @RestController 对比二、使用 @Data 与 不使用 @Dat

Mysql中深分页的五种常用方法整理

《Mysql中深分页的五种常用方法整理》在数据量非常大的情况下,深分页查询则变得很常见,这篇文章为大家整理了5个常用的方法,文中的示例代码讲解详细,大家可以根据自己的需求进行选择... 目录方案一:延迟关联 (Deferred Join)方案二:有序唯一键分页 (Cursor-based Paginatio

使用PyTorch实现手写数字识别功能

《使用PyTorch实现手写数字识别功能》在人工智能的世界里,计算机视觉是最具魅力的领域之一,通过PyTorch这一强大的深度学习框架,我们将在经典的MNIST数据集上,见证一个神经网络从零开始学会识... 目录当计算机学会“看”数字搭建开发环境MNIST数据集解析1. 认识手写数字数据库2. 数据预处理的

Python实现常用文本内容提取

《Python实现常用文本内容提取》在日常工作和学习中,我们经常需要从PDF、Word文档中提取文本,本文将介绍如何使用Python编写一个文本内容提取工具,有需要的小伙伴可以参考下... 目录一、引言二、文本内容提取的原理三、文本内容提取的设计四、文本内容提取的实现五、完整代码示例一、引言在日常工作和学

Redis中的常用的五种数据类型详解

《Redis中的常用的五种数据类型详解》:本文主要介绍Redis中的常用的五种数据类型详解,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录Redis常用的五种数据类型一、字符串(String)简介常用命令应用场景二、哈希(Hash)简介常用命令应用场景三、列表(L

Pytorch微调BERT实现命名实体识别

《Pytorch微调BERT实现命名实体识别》命名实体识别(NER)是自然语言处理(NLP)中的一项关键任务,它涉及识别和分类文本中的关键实体,BERT是一种强大的语言表示模型,在各种NLP任务中显著... 目录环境准备加载预训练BERT模型准备数据集标记与对齐微调 BERT最后总结环境准备在继续之前,确

python中time模块的常用方法及应用详解

《python中time模块的常用方法及应用详解》在Python开发中,时间处理是绕不开的刚需场景,从性能计时到定时任务,从日志记录到数据同步,时间模块始终是开发者最得力的工具之一,本文将通过真实案例... 目录一、时间基石:time.time()典型场景:程序性能分析进阶技巧:结合上下文管理器实现自动计时

C/C++随机数生成的五种方法

《C/C++随机数生成的五种方法》C++作为一种古老的编程语言,其随机数生成的方法已经经历了多次的变革,早期的C++版本使用的是rand()函数和RAND_MAX常量,这种方法虽然简单,但并不总是提供... 目录C/C++ 随机数生成方法1. 使用 rand() 和 srand()2. 使用 <random