Multi-Cell Downlink Beamforming: Direct FP, Closed-Form FP, Weighted MMSE

2023-12-07 22:52

本文主要是介绍Multi-Cell Downlink Beamforming: Direct FP, Closed-Form FP, Weighted MMSE,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

这里写自定义目录标题

  • Direct FP
  • Closed-Form FP
    • the Lagrangian function
    • the Lagrange dual function: maximizing the Lagrangian
    • the Lagrange dual problem: minimizing the Lagrange dual function
    • Closed-Form FP
  • Weighted MMSE
    • 原论文
  • Lagrange dual
    • 5.1.1 The Lagrangian
    • 5.1.2 The Lagrange dual function
    • 5.2 The Lagrange dual problem
    • 5.2.3 Strong duality and Slater’s constraint qualification
    • 5.2.3 Strong duality and Slater’s constraint qualification
    • 5.5.3 KKT optimality conditions
  • 仿真

Multi-User in each Cell, MISO
沈闓明代码

Direct FP

K. Shen and W. Yu, “Fractional Programming for Communication Systems—Part I: Power Control and Beamforming,” in IEEE Transactions on Signal Processing, vol. 66, no. 10, pp. 2616-2630, 15 May15, 2018, doi: 10.1109/TSP.2018.2812733.

the multidimensional quadratic transform

∑ n = 1 N ∑ k = 1 K log ⁡ 2 ( 1 + ∣ h n , n , k H w n , k ∣ 2 ∑ ( j , i ) ≠ ( n , k ) ∣ h j , n , k H w j , i ∣ 2 + σ n , k 2 ) \sum\limits_{n = 1}^N {\sum\limits_{k = 1}^K {{{\log }_2}\left( {1 + \frac{{{{\left| {{\bf{h}}_{n,n,k}^H{{\bf{w}}_{n,k}}} \right|}^2}}}{{\sum\limits_{(j,i) \ne (n,k)} {{{\left| {{\bf{h}}_{j,n,k}^H{{\bf{w}}_{j,i}}} \right|}^2}} + \sigma _{n,k}^2}}} \right)} } n=1Nk=1Klog2 1+(j,i)=(n,k)hj,n,kHwj,i2+σn,k2hn,n,kHwn,k2
the direct FP approach applies the multidimensional quadratic transform (Theorem 2) to each SINR term.
f q ( W , Y ) = ∑ ( n , k ) log ⁡ ( 1 + 2 R e { y n , k H w n , k H h n , n , k } − ∣ y n , k ∣ 2 ( ∑ ( j , i ) ≠ ( n , k ) ∣ h j , n , k H w j , i ∣ 2 + σ n , k 2 ) ) {f_q}\left( {{\bf{W}},{\bf{Y}}} \right) = \sum\limits_{(n,k)} {\log \left( {1 + 2{\rm{Re}}\left\{ {y_{n,k}^H{\bf{w}}_{n,k}^H{{\bf{h}}_{n,n,k}}} \right\} - {{\left| {{y_{n,k}}} \right|}^2}\left( {\sum\limits_{(j,i) \ne (n,k)} {{{\left| {{\bf{h}}_{j,n,k}^H{{\bf{w}}_{j,i}}} \right|}^2}} + \sigma _{n,k}^2} \right)} \right)} fq(W,Y)=(n,k)log(1+2Re{yn,kHwn,kHhn,n,k}yn,k2((j,i)=(n,k) hj,n,kHwj,i 2+σn,k2))

Direct FP

  1. 更新 y n , k ⋆ = h n , n , k H w n , k ∑ ( j , i ) ≠ ( n , k ) ∣ h j , n , k H w j , i ∣ 2 + σ n , k 2 y_{n,k}^ \star = \frac{{{\bf{h}}_{n,n,k}^H{{\bf{w}}_{n,k}}}}{{\sum\limits_{(j,i) \ne (n,k)} {{{\left| {{\bf{h}}_{j,n,k}^H{{\bf{w}}_{j,i}}} \right|}^2}} + \sigma _{n,k}^2}} yn,k=(j,i)=(n,k)hj,n,kHwj,i2+σn,k2hn,n,kHwn,k
  2. 给定 y n , k {y_{n,k}} yn,k,求解问题 ,更新 w n , k {{\bf{w}}_{n,k}} wn,k
    max ⁡ { w n , k , y n , k } f q ( W , Y ) s . t . ∑ k = 1 K w n , k H w n , k ≤ p ˉ n , ∀ n = 1 , … , N , \begin{array}{l} \mathop {\max }\limits_{\left\{ {{{\bf{w}}_{n,k}},{y_{n,k}}} \right\}} \;\;{f_q}\left( {{\bf{W}},{\bf{Y}}} \right)\\ {\rm{s}}.{\rm{t}}.\;\sum\limits_{k = 1}^K {{\bf{w}}_{n,k}^H{{\bf{w}}_{n,k}}} \le {{\bar p}_n},\forall n = 1, \ldots ,N, \end{array} {wn,k,yn,k}maxfq(W,Y)s.t.k=1Kwn,kHwn,kpˉn,n=1,,N,
    the optimization problem is a convex problem of w n , k {{\bf{w}}_{n,k}} wn,k when the auxiliary variable y n , k {y_{n,k}} yn,k is held fixed.

Closed-Form FP

K. Shen and W. Yu, “Fractional Programming for Communication Systems—Part I: Power Control and Beamforming,” in IEEE Transactions on Signal Processing, vol. 66, no. 10, pp. 2616-2630, 15 May15, 2018, doi: 10.1109/TSP.2018.2812733.

∑ n = 1 N ∑ k = 1 K log ⁡ 2 ( 1 + ∣ h n , n , k H w n , k ∣ 2 ∑ ( j , i ) ≠ ( n , k ) ∣ h j , n , k H w j , i ∣ 2 + σ n , k 2 ) \sum\limits_{n = 1}^N {\sum\limits_{k = 1}^K {{{\log }_2}\left( {1 + \frac{{{{\left| {{\bf{h}}_{n,n,k}^H{{\bf{w}}_{n,k}}} \right|}^2}}}{{\sum\limits_{(j,i) \ne (n,k)} {{{\left| {{\bf{h}}_{j,n,k}^H{{\bf{w}}_{j,i}}} \right|}^2}} + \sigma _{n,k}^2}}} \right)} } n=1Nk=1Klog2 1+(j,i)=(n,k)hj,n,kHwj,i2+σn,k2hn,n,kHwn,k2
Lagrangian Dual Transform (Multidimensional and Complex)
f r ( W , U ) = ∑ ( n , k ) ( log ⁡ ( 1 + u n , k ) − u n , k + ( 1 + u n , k ) ∣ h n , n , k H w n , k ∣ 2 ∑ ( j , i ) ∣ h j , n , k H w j , i ∣ 2 + σ n , k 2 ) {f_r}\left( {{\bf{W}},{\bf{U}}} \right) = \sum\limits_{(n,k)} {\left( {\log \left( {1 + {u_{n,k}}} \right) - {u_{n,k}} + \left( {1 + {u_{n,k}}} \right)\frac{{{{\left| {{\bf{h}}_{n,n,k}^H{{\bf{w}}_{n,k}}} \right|}^2}}}{{\sum\limits_{(j,i)} {{{\left| {{\bf{h}}_{j,n,k}^H{{\bf{w}}_{j,i}}} \right|}^2}} + \sigma _{n,k}^2}}} \right)} fr(W,U)=(n,k) log(1+un,k)un,k+(1+un,k)(j,i)hj,n,kHwj,i2+σn,k2hn,n,kHwn,k2
∂ ∂ u n , k f r ( W , U ) = 0 \frac{\partial }{{\partial {u_{n,k}}}}{f_r}\left( {{\bf{W}},{\bf{U}}} \right) = 0 un,kfr(W,U)=0
u n , k ⋆ = γ n , k = ∣ h n , n , k H w n , k ∣ 2 ∑ ( j , i ) ≠ ( n , k ) ∣ h j , n , k H w j , i ∣ 2 + σ n , k 2 ∈ R 1 u_{n,k}^ \star = {\gamma _{n,k}} = \frac{{{{\left| {{\bf{h}}_{n,n,k}^H{{\bf{w}}_{n,k}}} \right|}^2}}}{{\sum\limits_{(j,i) \ne (n,k)} {{{\left| {{\bf{h}}_{j,n,k}^H{{\bf{w}}_{j,i}}} \right|}^2}} + \sigma _{n,k}^2}} \in {{\mathbb{R}}^1} un,k=γn,k=(j,i)=(n,k)hj,n,kHwj,i2+σn,k2hn,n,kHwn,k2R1
Quadratic Transform (Multidimensional)
f q ( W , U , V ) = ∑ ( n , k ) ( 2 ( 1 + u n , k ) R e { w n , k H h n , n , k v n , k } − ∣ v n , k ∣ 2 ( ∑ ( j , i ) ∣ h j , n , k H w j , i ∣ 2 + σ n , k 2 ) ) + c o n s t ( U ) {f_q}\left( {{\bf{W}},{\bf{U}},{\bf{V}}} \right) = \sum\limits_{(n,k)} {\left( {2\sqrt {(1 + {u_{n,k}})} {\rm{Re}}\left\{ {{\bf{w}}_{n,k}^H{{\bf{h}}_{n,n,k}}{v_{n,k}}} \right\} - {{\left| {{v_{n,k}}} \right|}^2}\left( {\sum\limits_{(j,i)} {{{\left| {{\bf{h}}_{j,n,k}^H{{\bf{w}}_{j,i}}} \right|}^2}} + \sigma _{n,k}^2} \right)} \right)} + {\rm{const}}({\bf{U}}) fq(W,U,V)=(n,k)(2(1+un,k) Re{wn,kHhn,n,kvn,k}vn,k2((j,i) hj,n,kHwj,i 2+σn,k2))+const(U)
∂ ∂ v n , k f q ( W , U , V ) = 0 \frac{\partial }{{\partial {v_{n,k}}}}{f_q}\left( {{\bf{W}},{\bf{U}},{\bf{V}}} \right) = 0 vn,kfq(W,U,V)=0
v n , k ⋆ = ( 1 + u n , k ) h n , n , k H w n , k ∑ ( j , i ) ∣ h j , n , k H w j , i ∣ 2 + σ n , k 2 v_{n,k}^ \star = \frac{{\sqrt {(1 + {u_{n,k}})} {\bf{h}}_{n,n,k}^H{{\bf{w}}_{n,k}}}}{{\sum\limits_{(j,i)} {{{\left| {{\bf{h}}_{j,n,k}^H{{\bf{w}}_{j,i}}} \right|}^2}} + \sigma _{n,k}^2}} vn,k=(j,i)hj,n,kHwj,i2+σn,k2(1+un,k) hn,n,kHwn,k

Transformed Problem
max ⁡ { w n , k } f q ( W , U , V ) s . t . p ˉ n − ∑ k = 1 K w n , k H w n , k ≥ 0 , ∀ n = 1 , … , N , \begin{array}{l} \mathop {\max }\limits_{\left\{ {{{\bf{w}}_{n,k}}} \right\}} \;\;{f_q}\left( {{\bf{W}},{\bf{U}},{\bf{V}}} \right)\\ {\rm{s}}.{\rm{t}}.\;{{\bar p}_n} - \sum\limits_{k = 1}^K {{\bf{w}}_{n,k}^H{{\bf{w}}_{n,k}}} \ge 0,\forall n = 1, \ldots ,N, \end{array} {wn,k}maxfq(W,U,V)s.t.pˉnk=1Kwn,kHwn,k0,n=1,,N,

the Lagrangian function

L ( W , U , V , η ) = f q ( W , U , V ) + ∑ n = 1 N η n ( p ˉ n − ∑ k = 1 K w n , k H w n , k ) L({\bf{W}},{\bf{U}},{\bf{V}},{\bm{\eta}}) = {f_q}({\bf{W}},{\bf{U}},{\bf{V}}) + \sum\limits_{n = 1}^N {{\eta _n}\left( {{{\bar p}_n} - \sum\limits_{k = 1}^K {{\bf{w}}_{n,k}^H{{\bf{w}}_{n,k}}} } \right)} L(W,U,V,η)=fq(W,U,V)+n=1Nηn(pˉnk=1Kwn,kHwn,k)

the Lagrange dual function: maximizing the Lagrangian

g ( η ) = m a x { w n , k } L ( W , U , V , η ) g\left( {\bm{\eta}} \right) = \mathop {{\rm{max}}}\limits_{\left\{ {{{\bf{w}}_{n,k}}} \right\}} \;L({\bf{W}},{\bf{U}},{\bf{V}},{\bm{\eta}}) g(η)={wn,k}maxL(W,U,V,η)
∂ ∂ w n , k L ( W , U , V , η ) = 0 ⇒ \frac{\partial }{{\partial {{\bf{w}}_{n,k}}}}L({\bf{W}},{\bf{U}},{\bf{V}},{\bm{\eta}}) = 0 \Rightarrow wn,kL(W,U,V,η)=0
w n , k ∗ = ( 1 + u n , k ) h n , n , k v n , k ∑ ( m , l ) ( h n , m , l v m , l v m , l H h n , m , l H ) + η n I {\bf{w}}_{n,k}^* = \frac{{\sqrt {(1 + {u_{n,k}})} {{\bf{h}}_{n,n,k}}{v_{n,k}}}}{{\sum\limits_{(m,l)} {\left( {{{\bf{h}}_{n,m,l}}{v_{m,l}}v_{m,l}^H{\bf{h}}_{n,m,l}^H} \right)} + {\eta _n}I}} wn,k=(m,l)(hn,m,lvm,lvm,lHhn,m,lH)+ηnI(1+un,k) hn,n,kvn,k

the Lagrange dual problem: minimizing the Lagrange dual function

Lagrange multipliers are component-wise non-negative
m i n η ≥ 0 g ( η ) \mathop {{\rm{min}}}\limits_{{\bm{\eta}} \ge 0} g\left( {\bm{\eta}} \right) η0ming(η)

Closed-Form FP

Closed-Form FP

  1. 更新 v n , k ⋆ = ( 1 + u n , k ) h n , n , k H w n , k ∑ ( j , i ) ∣ h j , n , k H w j , i ∣ 2 + σ n , k 2 v_{n,k}^ \star = \frac{{\sqrt {(1 + {u_{n,k}})} {\bf{h}}_{n,n,k}^H{{\bf{w}}_{n,k}}}}{{\sum\limits_{(j,i)} {{{\left| {{\bf{h}}_{j,n,k}^H{{\bf{w}}_{j,i}}} \right|}^2}} + \sigma _{n,k}^2}} vn,k=(j,i)hj,n,kHwj,i2+σn,k2(1+un,k) hn,n,kHwn,k
  2. 更新 u n , k ⋆ = γ n , k = ∣ h n , n , k H w n , k ∣ 2 ∑ ( j , i ) ≠ ( n , k ) ∣ h j , n , k H w j , i ∣ 2 + σ n , k 2 ∈ R 1 u_{n,k}^ \star = {\gamma _{n,k}} = \frac{{{{\left| {{\bf{h}}_{n,n,k}^H{{\bf{w}}_{n,k}}} \right|}^2}}}{{\sum\limits_{(j,i) \ne (n,k)} {{{\left| {{\bf{h}}_{j,n,k}^H{{\bf{w}}_{j,i}}} \right|}^2}} + \sigma _{n,k}^2}} \in {{\mathbb{R}}^1} un,k=γn,k=(j,i)=(n,k)hj,n,kHwj,i2+σn,k2hn,n,kHwn,k2R1
  3. 更新 w n , k ∗ = ( 1 + u n , k ) h n , n , k v n , k ∑ ( m , l ) ( h n , m , l v m , l v m , l H h n , m , l H ) + η n I {\bf{w}}_{n,k}^* = \frac{{\sqrt {(1 + {u_{n,k}})} {{\bf{h}}_{n,n,k}}{v_{n,k}}}}{{\sum\limits_{(m,l)} {\left( {{{\bf{h}}_{n,m,l}}{v_{m,l}}v_{m,l}^H{\bf{h}}_{n,m,l}^H} \right)} + {\eta _n}I}} wn,k=(m,l)(hn,m,lvm,lvm,lHhn,m,lH)+ηnI(1+un,k) hn,n,kvn,k ,其中,利用二分法可以找到最小的 η n {\eta _n} ηn ,使得 ∑ k = 1 K w n , k H ( η n ) w n , k ( η n ) = p ˉ n \sum\limits_{k = 1}^K {{\bf{w}}_{n,k}^H\left( {{\eta _n}} \right){{\bf{w}}_{n,k}}\left( {{\eta _n}} \right)} = {\bar p_n} k=1Kwn,kH(ηn)wn,k(ηn)=pˉn
    w n , k ( η n ) = ( 1 + u n , k ) h n , n , k v n , k ∑ ( m , l ) ( h n , m , l v m , l v m , l H h n , m , l H ) + η n I {{\bf{w}}_{n,k}}\left( {{\eta _n}} \right) = \frac{{\sqrt {(1 + {u_{n,k}})} {{\bf{h}}_{n,n,k}}{v_{n,k}}}}{{\sum\limits_{(m,l)} {\left( {{{\bf{h}}_{n,m,l}}{v_{m,l}}v_{m,l}^H{\bf{h}}_{n,m,l}^H} \right)} + {\eta _n}I}} wn,k(ηn)=(m,l)(hn,m,lvm,lvm,lHhn,m,lH)+ηnI(1+un,k) hn,n,kvn,k

对偶变量或Lagrange multipliers的更新:KKT条件 η n ( p ˉ n − ∑ k = 1 K w n , k H w n , k ) = 0 , ∀ n = 1 , … , N , {\eta _n}\left( {{{\bar p}_n} - \sum\limits_{k = 1}^K {{\bf{w}}_{n,k}^H{{\bf{w}}_{n,k}}} } \right) = 0,\forall n = 1, \ldots ,N, ηn(pˉnk=1Kwn,kHwn,k)=0,n=1,,N,
∑ k = 1 K w n , k H ( η n ) w n , k ( η n ) \sum\limits_{k = 1}^K {{\bf{w}}_{n,k}^H\left( {{\eta _n}} \right){{\bf{w}}_{n,k}}\left( {{\eta _n}} \right)} k=1Kwn,kH(ηn)wn,k(ηn)是关于 η n {\eta _n} ηn的单调递减函数,利用二分法可以找到最小的 η n {\eta _n} ηn ,使得 ∑ k = 1 K w n , k H ( η n ) w n , k ( η n ) = p ˉ n \sum\limits_{k = 1}^K {{\bf{w}}_{n,k}^H\left( {{\eta _n}} \right){{\bf{w}}_{n,k}}\left( {{\eta _n}} \right)} = {\bar p_n} k=1Kwn,kH(ηn)wn,k(ηn)=pˉn
η n < η n ∗ {\eta _n} < \eta _n^* ηn<ηn时, ∑ k = 1 K w n , k H ( η n ) w n , k ( η n ) \sum\limits_{k = 1}^K {{\bf{w}}_{n,k}^H\left( {{\eta _n}} \right){{\bf{w}}_{n,k}}\left( {{\eta _n}} \right)} k=1Kwn,kH(ηn)wn,k(ηn) >基站最大发射功率 p ˉ n {\bar p_n} pˉn
η n = η n ∗ {\eta _n} = \eta _n^* ηn=ηn 时, ∑ k = 1 K w n , k H ( η n ) w n , k ( η n ) \sum\limits_{k = 1}^K {{\bf{w}}_{n,k}^H\left( {{\eta _n}} \right){{\bf{w}}_{n,k}}\left( {{\eta _n}} \right)} k=1Kwn,kH(ηn)wn,k(ηn) =基站最大发射功率 p ˉ n {\bar p_n} pˉn
η n > η n ∗ {\eta _n} > \eta _n^* ηn>ηn时, ∑ k = 1 K w n , k H ( η n ) w n , k ( η n ) \sum\limits_{k = 1}^K {{\bf{w}}_{n,k}^H\left( {{\eta _n}} \right){{\bf{w}}_{n,k}}\left( {{\eta _n}} \right)} k=1Kwn,kH(ηn)wn,k(ηn) <基站最大发射功率 p ˉ n {\bar p_n} pˉn

Weighted MMSE

u n , k = h n , n , k H w n , k ∑ ( m , j ) ∣ h m , n , k H w m , j ∣ 2 + σ n , k 2 {u_{n,k}} = \frac{{{\bf{h}}_{n,n,k}^H{{\bf{w}}_{n,k}}}}{{\sum\limits_{(m,j)} {{{\left| {{\bf{h}}_{m,n,k}^H{{\bf{w}}_{m,j}}} \right|}^2}} + \sigma _{n,k}^2}} un,k=(m,j)hm,n,kHwm,j2+σn,k2hn,n,kHwn,k
(图中h的下标打错了)

hm,n,k denote the downlink channel between BS m and UE k in cell n
wn,k denote the beamformer for UE k in cell n
the optimum Lagrange multiplier μ n ⋆ \mu _n^ \star μn can be determined efficiently by a bisection search method.
Weighted MMSE

原论文

Q. Shi, M. Razaviyayn, Z. -Q. Luo and C. He, “An Iteratively Weighted MMSE Approach to Distributed Sum-Utility Maximization for a MIMO Interfering Broadcast Channel,” in IEEE Transactions on Signal Processing, vol. 59, no. 9, pp. 4331-4340, Sept. 2011, doi: 10.1109/TSP.2011.2147784.

Weighted MMSE
V i k {{\bf{V}}_{{i_k}}} Vik 表示基站k对用户 i k {i_k} ik 的波束成形
H i k , j {{\bf{H}}_{{i_k},j}} Hik,j 表示从基站j到用户 i k {i_k} ik的信道
u k , i = h k , k , i H w k , i ∑ ( j , l ) ∣ h j , k , i H w j , l ∣ 2 + σ k , i 2 {u_{k,i}} = \frac{{{\bf{h}}_{k,k,i}^H{{\bf{w}}_{k,i}}}}{{\sum\limits_{(j,l)} {{{\left| {{\bf{h}}_{j,k,i}^H{{\bf{w}}_{j,l}}} \right|}^2}} + \sigma _{k,i}^2}} uk,i=(j,l)hj,k,iHwj,l2+σk,i2hk,k,iHwk,i

Lagrange dual

上海交通大学 CS257 Linear and Convex Optimization
南京大学 Duality (I) - NJU

the standard form (5.1)
在这里插入图片描述
min ⁡ X f ( X ) s . t . g i ( X ) ≤ 0 , ∀ i = 1 , … , m , \begin{array}{l} {\mathop {\min }_{\bf{X}} \;\;f\left( {\bf{X}} \right)}\\ {{\rm{s}}.{\rm{t}}.\;{g_i}\left( {\bf{X}} \right) \le 0,\forall i = 1, \ldots ,m,} \end{array} minXf(X)s.t.gi(X)0,i=1,,m,

5.1.1 The Lagrangian

在这里插入图片描述
the dual variables or Lagrange multiplier vectors associated with the problem (5.1).

5.1.2 The Lagrange dual function

the minimum value of the Lagrangian
在这里插入图片描述

5.2 The Lagrange dual problem

the Lagrange dual problem associated with the problem (5.1).
在这里插入图片描述

5.2.3 Strong duality and Slater’s constraint qualification

在这里插入图片描述

5.2.3 Strong duality and Slater’s constraint qualification

Slater’s theorem states that
strong duality holds, if Slater’s condition holds (and the problem is convex).
strong duality obtains, when the primal problem is convex and Slater’s condition holds

Slater’s Condition for Convex Problems
上海交通大学 CS257 Linear and Convex Optimization
在这里插入图片描述

5.5.3 KKT optimality conditions

Karush-Kuhn-Tucker (KKT) conditions
在这里插入图片描述
for any optimization problem with differentiable objective and constraint functions for which strong duality obtains, any pair of primal and dual optimal points must satisfy the KKT conditions (5.49).

在这里插入图片描述

仿真

这篇关于Multi-Cell Downlink Beamforming: Direct FP, Closed-Form FP, Weighted MMSE的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/467638

相关文章

2014 Multi-University Training Contest 8小记

1002 计算几何 最大的速度才可能拥有无限的面积。 最大的速度的点 求凸包, 凸包上的点( 注意不是端点 ) 才拥有无限的面积 注意 :  凸包上如果有重点则不满足。 另外最大的速度为0也不行的。 int cmp(double x){if(fabs(x) < 1e-8) return 0 ;if(x > 0) return 1 ;return -1 ;}struct poin

2014 Multi-University Training Contest 7小记

1003   数学 , 先暴力再解方程。 在b进制下是个2 , 3 位数的 大概是10000进制以上 。这部分解方程 2-10000 直接暴力 typedef long long LL ;LL n ;int ok(int b){LL m = n ;int c ;while(m){c = m % b ;if(c == 3 || c == 4 || c == 5 ||

2014 Multi-University Training Contest 6小记

1003  贪心 对于111...10....000 这样的序列,  a 为1的个数,b为0的个数,易得当 x= a / (a + b) 时 f最小。 讲串分成若干段  1..10..0   ,  1..10..0 ,  要满足x非递减 。  对于 xi > xi+1  这样的合并 即可。 const int maxn = 100008 ;struct Node{int

cell phone teardown 手机拆卸

tweezer 镊子 screwdriver 螺丝刀 opening tool 开口工具 repair 修理 battery 电池 rear panel 后盖 front and rear cameras 前后摄像头 volume button board 音量键线路板 headphone jack 耳机孔 a cracked screen 破裂屏 otherwise non-functiona

form表单提交编码的问题

浏览器在form提交后,会生成一个HTTP的头部信息"content-type",标准规定其形式为Content-type: application/x-www-form-urlencoded; charset=UTF-8        那么我们如果需要修改编码,不使用默认的,那么可以如下这样操作修改编码,来满足需求: hmtl代码:   <meta http-equiv="Conte

js异步提交form表单的解决方案

1.定义异步提交表单的方法 (通用方法) /*** 异步提交form表单* @param options {form:form表单元素,success:执行成功后处理函数}* <span style="color:#ff0000;"><strong>@注意 后台接收参数要解码否则中文会导致乱码 如:URLDecoder.decode(param,"UTF-8")</strong></span>

前端form表单+ifarme方式实现大文件下载

// main.jsimport Vue from 'vue';import App from './App.vue';import { downloadTokenFile } from '@/path/to/your/function'; // 替换为您的函数路径// 将 downloadTokenFile 添加到 Vue 原型上Vue.prototype.$downloadTokenF

[轻笔记] pip install : Read timed out. (closed)

添加超时参数(单位秒) pip --default-timeout=10000 install ${package_name}

FORM的ENCTYPE=multipart/form-data 时request.getParameter()值为null问题的解决

此情况发生于前台表单传送至后台java servlet处理: 问题:当Form需要FileUpload上传文件同时上传表单其他控件数据时,由于设置了ENCTYPE=”multipart/form-data” 属性,后台request.getParameter()获取的值为null 上传文件的参考代码:http://www.runoob.com/jsp/jsp-file-uploading.ht

Form 表单的 resetFields() 失效原因

假设我们有如下代码:  <template><ElForm ref="formRef" :model="formModel" :rules="rules"><!-- 表单内容 --></ElForm></template><script setup>import { ref } from 'vue';const formRef = ref(null);const formModel = ref