《opencv实用探索·十二》opencv之laplacian(拉普拉斯)边缘检测,Scharr边缘检测,Log边缘检测

本文主要是介绍《opencv实用探索·十二》opencv之laplacian(拉普拉斯)边缘检测,Scharr边缘检测,Log边缘检测,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1、Laplacian算子
Laplacian(拉普拉斯)算子是一种二阶导数算子,其具有旋转不变性,可以满足不同方向的图像边缘锐化(边缘检测)的要求。同时,在图像边缘处理中,二阶微分的边缘定位能力更强,锐化效果更好,因此在进行图像边缘处理时,直接采用二阶微分算子而不使用一阶微分。

通常情况下,其算子的系数之和需要为零。 Laplacian算子具有各方向同性的特点,能够对任意方向的边缘进行提取,具有无方向性的优点,因此使用Laplacian算子提取边缘不需要分别检测X方向的边缘和Y方向的边缘,只需要一次边缘检测即可。Laplacian算子是一种二阶导数算子,对噪声比较敏感,因此常需要配合高斯滤波一起使用。
Laplacian使用的卷积核如下:
在这里插入图片描述
像素点的近似导数值计算:
左图是 Laplacian 算子,右图是一个简单图像,其中有 9 个像素点。
在这里插入图片描述
计算像素点 P5 的近似导数值,如下:
P5 = (P2 + P4 + P6 + P8) - 4*P5

下面是一些实际计算的例子:
在左图中,像素点 P5 与周围像素点的值相差较小,得到的计算结果值较小,边缘不明显。
在中间的图中,像素点 P5 与周围像素点的值相差较大,得到的计算结果值较大,边缘较明显。
在右图中,像素点 P5 与周围像素点的值相差较大,得到的计算结果值较大,边缘较明显。
在这里插入图片描述

需要注意,在上述卷积核与图像进行卷积运算后,计算结果的值可能为正数,也可能为负数。所以,需要对计算结果取绝对值,以保证后续运算和显示都是正确的。

opencv之Laplacian接口调用:

void Laplacian( InputArray src, OutputArray dst, int ddepth,int ksize = 1, double scale = 1, double delta = 0,int borderType = BORDER_DEFAULT );

src:输入图像,可以是任意通道数的图像,但通常是单通道灰度图像。
dst:输出图像,与输入图像src具有相同的尺寸和通道数
ddepth:输出图像的深度,若src为CV_8U,则可取-1/CV_16S/CV_32F/CV_64F;若src为CV_16U/CV_16S,可取-1/CV_32F/CV_64F;若src为CV_32F,可取-1/CV_32F/CV_64F;若src为CV_64F,可取-1/CV_64F。,当赋值为-1时,输出图像的数据类型自动选择。
ksize:用于计算二阶导数的核尺寸大小,必须为正奇数。
scale:对导数计算结果进行缩放的缩放因子,默认系数为1,表示不进行缩放。也称对比度
delta:偏值,在计算结果中加上偏值。也称亮度
borderType:像素外推法选择标志,默认参数为BORDER_DEFAULT,表示不包含边界值倒序填充。

ddepth说明:
ddepth 参数表示输出图像的深度,即输出图像的数据类型。它决定了输出图像中像素值的数据范围和存储格式。
常见的选项包括:
CV_8U:8位无符号整数,表示范围为 [0, 255]。
CV_16U:16位无符号整数,表示范围为 [0, 65535]。
CV_16S:16位有符号整数,表示范围为 [-32768, 32767]。
CV_32F:32位浮点数。
CV_64F:64位浮点数。

选择合适的深度类型取决于你的应用和对图像数据的要求。例如,如果你希望保留边缘检测操作中的负值,可能会选择使用浮点数类型(如 CV_64F),因为它可以存储负数。如果你只关心边缘的存在与否而不关心边缘的方向,那么使用无符号整数类型可能更合适。
在Laplacian算子中,通常选择 CV_16S 或 CV_64F 作为 ddepth,因为Laplacian操作可能产生负值,而这些负值在 CV_8U 类型中会被截断为零。在显示图像之前,通常需要对结果进行取绝对值(cv::abs())并进行数据类型转换。

下面代码为使用拉普拉斯检测边缘的一个demo:

#include <opencv2/opencv.hpp>
#include <iostream>int main() 
{  //载入原始图Mat src = imread("1.jpg");//【1】定义变量Mat src_gray, dst, abs_dst;//【2】显示原图imshow("原始图", src);//【3】使用高斯滤波消除噪声GaussianBlur(src, src, Size(3, 3), 0);//【4】转为灰度图cvtColor(src, src_gray, COLOR_BGR2GRAY);//【5】Laplacian查找边缘Laplacian(src_gray, dst, CV_16S, 3);//【6】计算绝对值,并将结果转为8位convertScaleAbs(dst, abs_dst);//【7】显示效果图imshow("Laplacian变换", abs_dst);cout << "Laplacian算法输出图像的通道" << abs_dst.channels() << endl;waitKey(0);destroyAllWindows();return 0;
}

效果图如下,左边是原图,右边是拉普拉斯边缘检测图:
在这里插入图片描述

2、Scharr 算子
scharr算子和sobel的原理一致(sobel算子看上一章内容),但scharr算子对于边界的梯度计算效果更精确

他们的区别在于:
(1)是Gx和Gy参数的大小不同,也就是卷积核中各元素的权不同,其他都一样,scharr算子对于边界的梯度计算效果更精确;
(2)Scharr算子的核设计更加平滑,这使得其在一定程度上对噪声具有更好的鲁棒性;
(3)由于Scharr算子的核更复杂,因此在计算上可能相对Sobel算子更为耗时。

在实际应用中,选择Scharr还是Sobel通常取决于具体的场景和需求。如果对边缘的敏感度较高,并且噪声较少,Scharr算子可能是一个更好的选择。如果计算效率和简单性更为重要,那么Sobel算子可能更适合。

Scharr在X和Y轴方向的卷积核如下:
在这里插入图片描述
opencv之Scharr算子接口说明:

void Scharr( InputArray src, OutputArray dst, int ddepth,int dx, int dy, double scale = 1, double delta = 0,int borderType = BORDER_DEFAULT )

src: 输入图像,可以是任意通道数的图像。
dst: 输出图像,算法的结果将存储在这里。
ddepth: 输出图像的深度,若src为CV_8U,则可取-1/CV_16S/CV_32F/CV_64F;若src为CV_16U/CV_16S,可取-1/CV_32F/CV_64F;若src为CV_32F,可取-1/CV_32F/CV_64F;若src为CV_64F,可取-1/CV_64F。,当赋值为-1时,输出图像的数据类型自动选择。
dx 和 dy: x 和 y 方向的导数阶数,通常为 0 或 1。0表示这个方向上没有求导。
scale: 可选参数,表示缩放因子,默认为1。
delta: 可选参数,表示在卷积结果上加上的偏置,默认为0。
borderType: 可选参数,用于指定边界模式,默认为 cv::BORDER_DEFAULT

代码演示:

#include <opencv2/opencv.hpp>
#include <iostream>int main() 
{  // 读取图像cv::Mat image = cv::imread("1.jpg", cv::IMREAD_GRAYSCALE);// 检查图像是否成功读取if (image.empty()) {std::cerr << "Error: Could not read the image." << std::endl;return -1;}// 应用Scharr算子分别获取X和Y方向一阶边缘cv::Mat scharrX, scharrY;cv::Scharr(image, scharrX, CV_16S, 1, 0);cv::Scharr(image, scharrY, CV_16S, 0, 1);// 计算绝对值,并将结果转为8位// 因为卷积操作可能产生负值,而这些负值在 CV_8U 类型中会被截断为零。在显示图像之前,通常需要对结果进行取绝对值(cv::abs())并进行数据类型转换。convertScaleAbs(scharrX, scharrX);convertScaleAbs(scharrY, scharrY);// 显示原始图像和Scharr算子的输出cv::imshow("Original Image", image);cv::imshow("Gradient Magnitude", scharrX + scharrY);waitKey(0);![在这里插入图片描述](https://img-blog.csdnimg.cn/direct/8899b12d049441cb8d7d24a110581414.png)destroyAllWindows();return 0;
}

效果图如下,左边是原图,右边是Scharr边缘检测图
在这里插入图片描述

3、Log算子
LoG(Laplacian of Gaussian)算子结合了高斯滤波和拉普拉斯边缘检测,用于检测图像中的边缘。LoG算子首先对图像进行高斯平滑,然后应用拉普拉斯算子。这有助于减少噪声的影响,并突出图像中的边缘。
在OpenCV中,cv::GaussianBlur和cv::Laplacian函数可以用于实现LoG算子的操作。

#include <opencv2/opencv.hpp>
#include <iostream>int main() {// 读取图像cv::Mat image = cv::imread("your_image.jpg", cv::IMREAD_GRAYSCALE);// 检查图像是否成功读取if (image.empty()) {std::cerr << "Error: Could not read the image." << std::endl;return -1;}// 高斯平滑cv::Mat blurred;cv::GaussianBlur(image, blurred, cv::Size(5, 5), 0);// 应用拉普拉斯算子cv::Mat laplacian;cv::Laplacian(blurred, laplacian, CV_64F);// 取绝对值并转换为8位无符号整数laplacian = cv::abs(laplacian);laplacian.convertTo(laplacian, CV_8U);// 显示原始图像和LoG算子的输出cv::imshow("Original Image", image);cv::imshow("LoG Operator", laplacian);// 等待用户按键cv::waitKey(0);return 0;
}
在这里插入图片描述

这篇关于《opencv实用探索·十二》opencv之laplacian(拉普拉斯)边缘检测,Scharr边缘检测,Log边缘检测的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/466541

相关文章

从基础到进阶详解Python条件判断的实用指南

《从基础到进阶详解Python条件判断的实用指南》本文将通过15个实战案例,带你大家掌握条件判断的核心技巧,并从基础语法到高级应用一网打尽,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一... 目录​引言:条件判断为何如此重要一、基础语法:三行代码构建决策系统二、多条件分支:elif的魔法三、

Python脚本轻松实现检测麦克风功能

《Python脚本轻松实现检测麦克风功能》在进行音频处理或开发需要使用麦克风的应用程序时,确保麦克风功能正常是非常重要的,本文将介绍一个简单的Python脚本,能够帮助我们检测本地麦克风的功能,需要的... 目录轻松检测麦克风功能脚本介绍一、python环境准备二、代码解析三、使用方法四、知识扩展轻松检测麦

Python 字符串裁切与提取全面且实用的解决方案

《Python字符串裁切与提取全面且实用的解决方案》本文梳理了Python字符串处理方法,涵盖基础切片、split/partition分割、正则匹配及结构化数据解析(如BeautifulSoup、j... 目录python 字符串裁切与提取的完整指南 基础切片方法1. 使用切片操作符[start:end]2

Python按照24个实用大方向精选的上千种工具库汇总整理

《Python按照24个实用大方向精选的上千种工具库汇总整理》本文整理了Python生态中近千个库,涵盖数据处理、图像处理、网络开发、Web框架、人工智能、科学计算、GUI工具、测试框架、环境管理等多... 目录1、数据处理文本处理特殊文本处理html/XML 解析文件处理配置文件处理文档相关日志管理日期和

精选20个好玩又实用的的Python实战项目(有图文代码)

《精选20个好玩又实用的的Python实战项目(有图文代码)》文章介绍了20个实用Python项目,涵盖游戏开发、工具应用、图像处理、机器学习等,使用Tkinter、PIL、OpenCV、Kivy等库... 目录① 猜字游戏② 闹钟③ 骰子模拟器④ 二维码⑤ 语言检测⑥ 加密和解密⑦ URL缩短⑧ 音乐播放

python中列表应用和扩展性实用详解

《python中列表应用和扩展性实用详解》文章介绍了Python列表的核心特性:有序数据集合,用[]定义,元素类型可不同,支持迭代、循环、切片,可执行增删改查、排序、推导式及嵌套操作,是常用的数据处理... 目录1、列表定义2、格式3、列表是可迭代对象4、列表的常见操作总结1、列表定义是处理一组有序项目的

OpenCV在Java中的完整集成指南分享

《OpenCV在Java中的完整集成指南分享》本文详解了在Java中集成OpenCV的方法,涵盖jar包导入、dll配置、JNI路径设置及跨平台兼容性处理,提供了图像处理、特征检测、实时视频分析等应用... 目录1. OpenCV简介与应用领域1.1 OpenCV的诞生与发展1.2 OpenCV的应用领域2

在Java中使用OpenCV实践

《在Java中使用OpenCV实践》用户分享了在Java项目中集成OpenCV4.10.0的实践经验,涵盖库简介、Windows安装、依赖配置及灰度图测试,强调其在图像处理领域的多功能性,并计划后续探... 目录前言一 、OpenCV1.简介2.下载与安装3.目录说明二、在Java项目中使用三 、测试1.测

PostgreSQL中rank()窗口函数实用指南与示例

《PostgreSQL中rank()窗口函数实用指南与示例》在数据分析和数据库管理中,经常需要对数据进行排名操作,PostgreSQL提供了强大的窗口函数rank(),可以方便地对结果集中的行进行排名... 目录一、rank()函数简介二、基础示例:部门内员工薪资排名示例数据排名查询三、高级应用示例1. 每

Linux系统性能检测命令详解

《Linux系统性能检测命令详解》本文介绍了Linux系统常用的监控命令(如top、vmstat、iostat、htop等)及其参数功能,涵盖进程状态、内存使用、磁盘I/O、系统负载等多维度资源监控,... 目录toppsuptimevmstatIOStatiotopslabtophtopdstatnmon