Meta开源最大多模态视频数据集—Ego-Exo4D

2023-12-07 11:12

本文主要是介绍Meta开源最大多模态视频数据集—Ego-Exo4D,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

社交、科技巨头Meta联合15所大学的研究机构,经过两年多的努力发布了首个多模态视频训练数据集和基础套件Ego-Exo4D,用于训练和研究AI大模型。

据悉,该数据集收集了来自13个城市839名参与者的视频,总时长超过1400小时,包含舞蹈、足球、篮球、攀岩、音乐、烹饪、自行车维修等8大类,131个复杂场景动作。这使得AI模型更好地理解人类的行为,有助于开发出更强大的多模态大模型。

Ego-Exo4D也是目前最大的公开第一人称和第三人称视频训练集。Meta已经准备开源该数据集,最晚12月底开放下载。

Ego-Exo4D下载地址:https://ego-exo4d-data.org/

论文地址:https://ego-exo4d-data.org/paper/ego-exo4d.pdf

图片

与其他视觉数据集不同的是,Ego-Exo4D最大技术特点在于数据的多模态性。基于Aria智能眼镜平台,第一人称视频带有丰富的同步录制信息,包括七通道音频、眼动追踪状态、头部运动测量(IMU)、双目RGB-D摄像视频、周围三维环境点云等。

此外,数据集中所有视频都配有三种不同的语言描述,分别是领域专家对表现的评论、参与者自身对所做活动的叙述以及第三方对各个原子操作的文字描述。

第一人称和第三人称摄像机设置

Ego-Exo4D数据集使用了一款名叫Aria的眼镜。该眼镜可以拍摄第一人称视频,记录运动员自己的视角。

同时场外还有4-5个GoPro摄像机,拍摄第三人称视频,记录教练的视角。这些摄像机使用了定制的QR码进行时间同步,确保第一人称视频和第三人称视频能精确匹配上,然后进行比较。

Aria眼镜内置丰富的传感器,提供RGB、深度、音频、IMU、眼动等多模态数据。Ego-Exo4D充分利用这些硬件优势,为每段第一人称视频同步捕获了七通道音频、眼动追踪、IMU动作数据、两个RGB-D SLAM摄像头以及周围3D点云环境。这些数据可支持多种新颖的多模态视频理解研究。

图片

精准文本描述

Ego-Exo4D视频数据还匹配了三种不同形式的语言描述,均与视频时间轴对齐:第一是领域内资深专家对执行者表现的评价性解说,揭示非专业人士不易察觉的技巧和方法;

图片

第二是执行者对自己所做活动的第一人称叙述;第三是外部标注人员对每个行为操作的简要文字描述。这些丰富的语言资源可以大幅推动视频理解中的语言参照和示教相关应用。

四大类基准测试

为了验证数据集的有效性,研究人员在四类基准测试上进行第一人称视频理解和多模态识别测试,用于评估在复杂视角转换、细粒度操作检测、示范者评级等方面的表现。

1)跨视角对应和迁移基准测试

该基准测试任务利用第一、三人称视频,研究跨视角的目标匹配和新视角合成问题。考察点包括:在极端视角、严重遮挡下的稀疏对应问题;合成新视角图像时运用姿态、语义先验的有效性等。

2)细粒度操作识别基准测试

该任务需要区分复杂顺序活动中语义相近的细粒度操作,如识别折叠被褥还是整理被褥。训练阶段允许使用配对的第一、三人称视频,以学习视角不变的表示。测试阶段仅给第一人称视频,考察跨视角特征迁移的效果。

图片

3)示范者熟练度评估基准测试

这项基准测试要求对整个视频中的示范者进行整体熟练度评级,同时需要识别视频中局部段落的正确/错误执行。这可驱动人类行为质量分析以及教练系统的研究。

4)第一人称姿态估计基准测试

这项基准测试目标是从第一人称视频中恢复三维的手部和身体关键点,解决动态场景中严重遮挡、模糊、大姿态变化等难题。

图片

结果显示,Ego-Exo4D皆获得了不错的成绩。例如,在第一人称和第三人称视角之间的目标追踪和姿态预测任务上,方法可以达到38%的平均IoU;而在识别17种顺序活动中689种细粒度操作的任务上,方法可以获得58%的准确率。

研究人员表示,传统的训练数据多数都是重复和模拟,很难让AI从更深度的角度去理解人类的行为和动作。

Ego-Exo4D提供了一个前所未有的大规模第一人称和第三人称视角视频数据集。该数据集和基准测试填补了现有数据集的空白,可推动更强的多模态大模型研究。

未来,数据集、文本标注和基准代码将完全开源以供研究人员使用。‍

本文素材来源Ego-Exo4D论文,如有侵权请联系删除

END

这篇关于Meta开源最大多模态视频数据集—Ego-Exo4D的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/465644

相关文章

流媒体平台/视频监控/安防视频汇聚EasyCVR播放暂停后视频画面黑屏是什么原因?

视频智能分析/视频监控/安防监控综合管理系统EasyCVR视频汇聚融合平台,是TSINGSEE青犀视频垂直深耕音视频流媒体技术、AI智能技术领域的杰出成果。该平台以其强大的视频处理、汇聚与融合能力,在构建全栈视频监控系统中展现出了独特的优势。视频监控管理系统EasyCVR平台内置了强大的视频解码、转码、压缩等技术,能够处理多种视频流格式,并以多种格式(RTMP、RTSP、HTTP-FLV、WebS

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

基于MySQL Binlog的Elasticsearch数据同步实践

一、为什么要做 随着马蜂窝的逐渐发展,我们的业务数据越来越多,单纯使用 MySQL 已经不能满足我们的数据查询需求,例如对于商品、订单等数据的多维度检索。 使用 Elasticsearch 存储业务数据可以很好的解决我们业务中的搜索需求。而数据进行异构存储后,随之而来的就是数据同步的问题。 二、现有方法及问题 对于数据同步,我们目前的解决方案是建立数据中间表。把需要检索的业务数据,统一放到一张M

关于数据埋点,你需要了解这些基本知识

产品汪每天都在和数据打交道,你知道数据来自哪里吗? 移动app端内的用户行为数据大多来自埋点,了解一些埋点知识,能和数据分析师、技术侃大山,参与到前期的数据采集,更重要是让最终的埋点数据能为我所用,否则可怜巴巴等上几个月是常有的事。   埋点类型 根据埋点方式,可以区分为: 手动埋点半自动埋点全自动埋点 秉承“任何事物都有两面性”的道理:自动程度高的,能解决通用统计,便于统一化管理,但个性化定

使用SecondaryNameNode恢复NameNode的数据

1)需求: NameNode进程挂了并且存储的数据也丢失了,如何恢复NameNode 此种方式恢复的数据可能存在小部分数据的丢失。 2)故障模拟 (1)kill -9 NameNode进程 [lytfly@hadoop102 current]$ kill -9 19886 (2)删除NameNode存储的数据(/opt/module/hadoop-3.1.4/data/tmp/dfs/na

异构存储(冷热数据分离)

异构存储主要解决不同的数据,存储在不同类型的硬盘中,达到最佳性能的问题。 异构存储Shell操作 (1)查看当前有哪些存储策略可以用 [lytfly@hadoop102 hadoop-3.1.4]$ hdfs storagepolicies -listPolicies (2)为指定路径(数据存储目录)设置指定的存储策略 hdfs storagepolicies -setStoragePo

Hadoop集群数据均衡之磁盘间数据均衡

生产环境,由于硬盘空间不足,往往需要增加一块硬盘。刚加载的硬盘没有数据时,可以执行磁盘数据均衡命令。(Hadoop3.x新特性) plan后面带的节点的名字必须是已经存在的,并且是需要均衡的节点。 如果节点不存在,会报如下错误: 如果节点只有一个硬盘的话,不会创建均衡计划: (1)生成均衡计划 hdfs diskbalancer -plan hadoop102 (2)执行均衡计划 hd

综合安防管理平台LntonAIServer视频监控汇聚抖动检测算法优势

LntonAIServer视频质量诊断功能中的抖动检测是一个专门针对视频稳定性进行分析的功能。抖动通常是指视频帧之间的不必要运动,这种运动可能是由于摄像机的移动、传输中的错误或编解码问题导致的。抖动检测对于确保视频内容的平滑性和观看体验至关重要。 优势 1. 提高图像质量 - 清晰度提升:减少抖动,提高图像的清晰度和细节表现力,使得监控画面更加真实可信。 - 细节增强:在低光条件下,抖

阿里开源语音识别SenseVoiceWindows环境部署

SenseVoice介绍 SenseVoice 专注于高精度多语言语音识别、情感辨识和音频事件检测多语言识别: 采用超过 40 万小时数据训练,支持超过 50 种语言,识别效果上优于 Whisper 模型。富文本识别:具备优秀的情感识别,能够在测试数据上达到和超过目前最佳情感识别模型的效果。支持声音事件检测能力,支持音乐、掌声、笑声、哭声、咳嗽、喷嚏等多种常见人机交互事件进行检测。高效推

【Prometheus】PromQL向量匹配实现不同标签的向量数据进行运算

✨✨ 欢迎大家来到景天科技苑✨✨ 🎈🎈 养成好习惯,先赞后看哦~🎈🎈 🏆 作者简介:景天科技苑 🏆《头衔》:大厂架构师,华为云开发者社区专家博主,阿里云开发者社区专家博主,CSDN全栈领域优质创作者,掘金优秀博主,51CTO博客专家等。 🏆《博客》:Python全栈,前后端开发,小程序开发,人工智能,js逆向,App逆向,网络系统安全,数据分析,Django,fastapi