sklearn随机森林 测试 路面点云分类

2023-12-07 10:04

本文主要是介绍sklearn随机森林 测试 路面点云分类,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、特征5个坐标

坐标-特征-类别
训练数据

二、模型训练

记录分享给有需要的人,代码质量勿喷

import numpy as np
import pandas as pd
import joblib#region 1 读取数据
dir = 'D:\\py\\RandomForest\\'
filename1 = 'trainRS'
filename2 = '.csv'
path = dir+filename1+filename2rawdata = pd.read_csv(path, encoding='gbk')print('=== 1 读取数据')
#endregion#region 2 构造数据集
x = rawdata.drop(columns=['x','y','z','Classification'])
y = rawdata['Classification']#训练集6:验证集4
from sklearn.model_selection import train_test_split
indices = np.arange(x.shape[0]) #索引
x_train,x_test,y_train, y_test, indices_train, indices_test = train_test_split(x,y,indices,test_size=0.4,random_state=0)print('=== 2 构造训练集和验证集')
#endregion#region 3 Random Forest 模型训练与保存------------------------最耗时间
from sklearn.ensemble import RandomForestClassifier
rfc = RandomForestClassifier() #随机森林实例化 默认参数
rfc.fit(x_train, y_train) #模型训练# 保存模型
joblib.dump(rfc,"modelRS.m")
# rfc2 = joblib.load("modelRS.m") #调用print('=== 3 Random Forest 模型训练与保存')
#endregion#region 4 模型评分与验证结果
score_rfc = rfc.score(x_test,y_test)
print('score_rfc =',score_rfc)#验证集预测
yPre = rfc.predict(x_test)print('=== 4 模型评分与验证集预测')
#endregion#region 5 查看特征的重要性占比
feature_importance = rfc.feature_importances_
cols = rawdata.columnsfi = pd.DataFrame({'特征':np.array(cols)[3:-1], '重要性占比':feature_importance}).sort_values(by='重要性占比',axis=0, ascending=False)print('=== 5 查看特征列的重要性')
print(fi)
#endregion#region 6 输出验证集结果
test_data = rawdata.loc[indices_test]
test_data_np = test_data.to_numpy()#合并原始数据和预测结果
test_data_pre = np.hstack((test_data_np, yPre.reshape(-1, 1))) #水平(沿着列方向)合并数组output_file = filename1 + "_ValidateResult.txt"
np.savetxt(output_file, test_data_pre, fmt="%f", delimiter="\t")print('=== 6 输出验证集结果')
#endregion

三、验证集结果

验证集98%,hhhhhhhhh

特征占比有点超乎想象

四、测试

记录分享给有需要的人,代码质量勿喷

import numpy as np
import pandas as pd
import joblib#region 1 读取数据
dir = 'D:\\py\\RandomForest\\'
filename1 = 'testRS2'
filename2 = '.csv'
path = dir+filename1+filename2
data = pd.read_csv(path,encoding='gbk')test = data.drop(columns=['x','y','z','Classification'])print('=== 1 读取数据')
#endregion#region 2 调用模型预测
rfc = joblib.load("modelRS.m") #调用
pre = rfc.predict(test)print('=== 2 调用模型预测')
#endregion#region 3 输出结果
data_np = data.to_numpy()
data_pre = np.hstack((data_np, pre.reshape(-1, 1))) #水平(沿着列方向)合并数组output_file = filename1 + "_PreResult.txt"
np.savetxt(output_file, data_pre, fmt="%f", delimiter="\t")print('=== 3 输出结果')
#endregion

还是有效果的

这篇关于sklearn随机森林 测试 路面点云分类的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/465446

相关文章

性能测试介绍

性能测试是一种测试方法,旨在评估系统、应用程序或组件在现实场景中的性能表现和可靠性。它通常用于衡量系统在不同负载条件下的响应时间、吞吐量、资源利用率、稳定性和可扩展性等关键指标。 为什么要进行性能测试 通过性能测试,可以确定系统是否能够满足预期的性能要求,找出性能瓶颈和潜在的问题,并进行优化和调整。 发现性能瓶颈:性能测试可以帮助发现系统的性能瓶颈,即系统在高负载或高并发情况下可能出现的问题

基于人工智能的图像分类系统

目录 引言项目背景环境准备 硬件要求软件安装与配置系统设计 系统架构关键技术代码示例 数据预处理模型训练模型预测应用场景结论 1. 引言 图像分类是计算机视觉中的一个重要任务,目标是自动识别图像中的对象类别。通过卷积神经网络(CNN)等深度学习技术,我们可以构建高效的图像分类系统,广泛应用于自动驾驶、医疗影像诊断、监控分析等领域。本文将介绍如何构建一个基于人工智能的图像分类系统,包括环境

字节面试 | 如何测试RocketMQ、RocketMQ?

字节面试:RocketMQ是怎么测试的呢? 答: 首先保证消息的消费正确、设计逆向用例,在验证消息内容为空等情况时的消费正确性; 推送大批量MQ,通过Admin控制台查看MQ消费的情况,是否出现消费假死、TPS是否正常等等问题。(上述都是临场发挥,但是RocketMQ真正的测试点,还真的需要探讨) 01 先了解RocketMQ 作为测试也是要简单了解RocketMQ。简单来说,就是一个分

认识、理解、分类——acm之搜索

普通搜索方法有两种:1、广度优先搜索;2、深度优先搜索; 更多搜索方法: 3、双向广度优先搜索; 4、启发式搜索(包括A*算法等); 搜索通常会用到的知识点:状态压缩(位压缩,利用hash思想压缩)。

【测试】输入正确用户名和密码,点击登录没有响应的可能性原因

目录 一、前端问题 1. 界面交互问题 2. 输入数据校验问题 二、网络问题 1. 网络连接中断 2. 代理设置问题 三、后端问题 1. 服务器故障 2. 数据库问题 3. 权限问题: 四、其他问题 1. 缓存问题 2. 第三方服务问题 3. 配置问题 一、前端问题 1. 界面交互问题 登录按钮的点击事件未正确绑定,导致点击后无法触发登录操作。 页面可能存在

业务中14个需要进行A/B测试的时刻[信息图]

在本指南中,我们将全面了解有关 A/B测试 的所有内容。 我们将介绍不同类型的A/B测试,如何有效地规划和启动测试,如何评估测试是否成功,您应该关注哪些指标,多年来我们发现的常见错误等等。 什么是A/B测试? A/B测试(有时称为“分割测试”)是一种实验类型,其中您创建两种或多种内容变体——如登录页面、电子邮件或广告——并将它们显示给不同的受众群体,以查看哪一种效果最好。 本质上,A/B测

【学习笔记】 陈强-机器学习-Python-Ch15 人工神经网络(1)sklearn

系列文章目录 监督学习:参数方法 【学习笔记】 陈强-机器学习-Python-Ch4 线性回归 【学习笔记】 陈强-机器学习-Python-Ch5 逻辑回归 【课后题练习】 陈强-机器学习-Python-Ch5 逻辑回归(SAheart.csv) 【学习笔记】 陈强-机器学习-Python-Ch6 多项逻辑回归 【学习笔记 及 课后题练习】 陈强-机器学习-Python-Ch7 判别分析 【学

2、PF-Net点云补全

2、PF-Net 点云补全 PF-Net论文链接:PF-Net PF-Net (Point Fractal Network for 3D Point Cloud Completion)是一种专门为三维点云补全设计的深度学习模型。点云补全实际上和图片补全是一个逻辑,都是采用GAN模型的思想来进行补全,在图片补全中,将部分像素点删除并且标记,然后卷积特征提取预测、判别器判别,来训练模型,生成的像

Verybot之OpenCV应用一:安装与图像采集测试

在Verybot上安装OpenCV是很简单的,只需要执行:         sudo apt-get update         sudo apt-get install libopencv-dev         sudo apt-get install python-opencv         下面就对安装好的OpenCV进行一下测试,编写一个通过USB摄像头采

用Pytho解决分类问题_DBSCAN聚类算法模板

一:DBSCAN聚类算法的介绍 DBSCAN(Density-Based Spatial Clustering of Applications with Noise)是一种基于密度的聚类算法,DBSCAN算法的核心思想是将具有足够高密度的区域划分为簇,并能够在具有噪声的空间数据库中发现任意形状的簇。 DBSCAN算法的主要特点包括: 1. 基于密度的聚类:DBSCAN算法通过识别被低密