通过深度优先算法来找出有向图的树边,后向边,前向边,横跨边

2023-12-06 07:08

本文主要是介绍通过深度优先算法来找出有向图的树边,后向边,前向边,横跨边,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

**通过深度优先算法来找出有向图的树边,后向边,前向边,横跨边(Java实现)

**

package graph;import java.io.IOException;
import java.util.Scanner;public class ListCycle 
{private class ENode {int ivex;       // 该边所指向的顶点的位置ENode nextEdge; // 指向下一条弧的指针}// 邻接表中表的顶点private class VNode {int color;//顶点颜色;int d;//初始时间戳;int f;//结束时间戳;char data;          // 顶点信息ENode firstEdge;    // 指向第一条依附该顶点的弧VNode pre;};int time;private VNode[] mVexs;  // 顶点数组/* * 创建图(自己输入数据)*/public ListCycle() {// 输入"顶点数"和"边数"System.out.printf("input vertex number: ");int vlen = readInt();System.out.printf("input edge number: ");int elen = readInt();if ( vlen < 1 || elen < 1 || (elen > (vlen*(vlen - 1)))) {System.out.printf("input error: invalid parameters!\n");return ;}// 初始化"顶点"mVexs = new VNode[vlen];for (int i = 0; i < mVexs.length; i++) {System.out.printf("vertex(%d): ", i);mVexs[i] = new VNode();mVexs[i].data = readChar();mVexs[i].firstEdge = null;}// 初始化"边"//mMatrix = new int[vlen][vlen];for (int i = 0; i < elen; i++) {// 读取边的起始顶点和结束顶点System.out.printf("edge(%d):", i);char c1 = readChar();char c2 = readChar();int p1 = getPosition(c1);int p2 = getPosition(c2);// 初始化node1ENode node1 = new ENode();node1.ivex = p2;// 将node1链接到"p1所在链表的末尾"if(mVexs[p1].firstEdge == null)mVexs[p1].firstEdge = node1;elselinkLast(mVexs[p1].firstEdge, node1);}}/** 创建图(用已提供的矩阵)** 参数说明:*     vexs  -- 顶点数组*     edges -- 边数组*/public ListCycle(char[] vexs, char[][] edges) {// 初始化"顶点数"和"边数"int vlen = vexs.length;int elen = edges.length;// 初始化"顶点"mVexs = new VNode[vlen];for (int i = 0; i < mVexs.length; i++) {mVexs[i] = new VNode();mVexs[i].data = vexs[i];mVexs[i].firstEdge = null;}// 初始化"边"for (int i = 0; i < elen; i++) {// 读取边的起始顶点和结束顶点char c1 = edges[i][0];char c2 = edges[i][1];// 读取边的起始顶点和结束顶点int p1 = getPosition(edges[i][0]);int p2 = getPosition(edges[i][1]);// 初始化node1ENode node1 = new ENode();node1.ivex = p2;// 将node1链接到"p1所在链表的末尾"if(mVexs[p1].firstEdge == null)mVexs[p1].firstEdge = node1;elselinkLast(mVexs[p1].firstEdge, node1);}}/** 将node节点链接到list的最后*/private void linkLast(ENode list, ENode node) {ENode p = list;while(p.nextEdge!=null)p = p.nextEdge;p.nextEdge = node;}/** 返回ch位置*/private int getPosition(char ch) {for(int i=0; i<mVexs.length; i++)if(mVexs[i].data==ch)return i;return -1;}/** 读取一个输入字符*/private char readChar() {char ch='0';do {try {ch = (char)System.in.read();} catch (IOException e) {e.printStackTrace();}} while(!((ch>='a'&&ch<='z') || (ch>='A'&&ch<='Z')));return ch;}/** 读取一个输入字符*/private int readInt() {Scanner scanner = new Scanner(System.in);return scanner.nextInt();}/** 深度优先搜索遍历图的递归实现*/private void DFS_visit(int i, boolean[] visited) {ENode node;//time= time+1;mVexs[i].d = ++time;mVexs[i].color=0;//1表示该节点颜色为灰色visited[i] = true;//System.out.printf("%c(%d) ", mVexs[i].data,mVexs[i].d);//颜色node = mVexs[i].firstEdge;while (node != null) {if (mVexs[node.ivex].color == -1) {System.out.println("("+i+","+node.ivex+")---树边");DFS_visit(node.ivex, visited);  }else if(mVexs[node.ivex].color == 0){System.out.println("("+i+","+node.ivex+")---后向边");}else{if(mVexs[i].color < mVexs[node.ivex].d)System.out.println("("+i+","+node.ivex+")---前向边");else if(mVexs[i].color > mVexs[node.ivex].d)System.out.println("("+i+","+node.ivex+")---横跨边");}     node = node.nextEdge;}mVexs[i].color=1;//time=time+1;mVexs[i].f = ++time;//System.out.printf("%c(%d) ", mVexs[i].data,mVexs[i].f);}/** 深度优先搜索遍历图*/public void DFS() {time = 0;boolean[] visited = new boolean[mVexs.length];       // 顶点访问标记// 初始化所有顶点都没有被访问for ( int i = 0; i <mVexs.length; i++){mVexs[i].color = -1;//初始化所有顶点都为白色mVexs[i].pre=null;visited[i] = false;}// System.out.printf("DFS: ");for (int j= 0; j < mVexs.length; j++) {if (!visited[j])DFS_visit(j, visited);}System.out.printf("\n");}/** 打印矩阵队列图*/public void print() {System.out.printf("List Graph:\n");for (int i = 0; i < mVexs.length; i++) {System.out.printf("%d(%c): ", i, mVexs[i].data);ENode node = mVexs[i].firstEdge;while (node != null) {System.out.printf("%d(%c) ", node.ivex, mVexs[node.ivex].data);node = node.nextEdge;}System.out.printf("\n");}}public static void main(String[] args) {char[] vexs = {'A', 'B', 'C', 'D', 'E', 'F', 'G'};char[][] edges = new char[][]{{'A', 'B'}, {'B', 'C'}, {'B', 'E'}, {'B', 'F'}, {'C', 'E'}, {'D', 'C'}, {'E', 'B'}, {'E', 'D'}, {'F', 'G'}}; ListCycle pG;// 自定义"图"(输入矩阵队列)//pG = new ListDG();// 采用已有的"图"pG = new ListCycle(vexs, edges);pG.print();   // 打印图pG.DFS();     // 深度优先遍}}

这篇关于通过深度优先算法来找出有向图的树边,后向边,前向边,横跨边的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/460891

相关文章

深度解析Java DTO(最新推荐)

《深度解析JavaDTO(最新推荐)》DTO(DataTransferObject)是一种用于在不同层(如Controller层、Service层)之间传输数据的对象设计模式,其核心目的是封装数据,... 目录一、什么是DTO?DTO的核心特点:二、为什么需要DTO?(对比Entity)三、实际应用场景解析

深度解析Java项目中包和包之间的联系

《深度解析Java项目中包和包之间的联系》文章浏览阅读850次,点赞13次,收藏8次。本文详细介绍了Java分层架构中的几个关键包:DTO、Controller、Service和Mapper。_jav... 目录前言一、各大包1.DTO1.1、DTO的核心用途1.2. DTO与实体类(Entity)的区别1

Java中的雪花算法Snowflake解析与实践技巧

《Java中的雪花算法Snowflake解析与实践技巧》本文解析了雪花算法的原理、Java实现及生产实践,涵盖ID结构、位运算技巧、时钟回拨处理、WorkerId分配等关键点,并探讨了百度UidGen... 目录一、雪花算法核心原理1.1 算法起源1.2 ID结构详解1.3 核心特性二、Java实现解析2.

深度解析Python装饰器常见用法与进阶技巧

《深度解析Python装饰器常见用法与进阶技巧》Python装饰器(Decorator)是提升代码可读性与复用性的强大工具,本文将深入解析Python装饰器的原理,常见用法,进阶技巧与最佳实践,希望可... 目录装饰器的基本原理函数装饰器的常见用法带参数的装饰器类装饰器与方法装饰器装饰器的嵌套与组合进阶技巧

深度解析Spring Boot拦截器Interceptor与过滤器Filter的区别与实战指南

《深度解析SpringBoot拦截器Interceptor与过滤器Filter的区别与实战指南》本文深度解析SpringBoot中拦截器与过滤器的区别,涵盖执行顺序、依赖关系、异常处理等核心差异,并... 目录Spring Boot拦截器(Interceptor)与过滤器(Filter)深度解析:区别、实现

深度解析Spring AOP @Aspect 原理、实战与最佳实践教程

《深度解析SpringAOP@Aspect原理、实战与最佳实践教程》文章系统讲解了SpringAOP核心概念、实现方式及原理,涵盖横切关注点分离、代理机制(JDK/CGLIB)、切入点类型、性能... 目录1. @ASPect 核心概念1.1 AOP 编程范式1.2 @Aspect 关键特性2. 完整代码实

SpringBoot开发中十大常见陷阱深度解析与避坑指南

《SpringBoot开发中十大常见陷阱深度解析与避坑指南》在SpringBoot的开发过程中,即使是经验丰富的开发者也难免会遇到各种棘手的问题,本文将针对SpringBoot开发中十大常见的“坑... 目录引言一、配置总出错?是不是同时用了.properties和.yml?二、换个位置配置就失效?搞清楚加

Python中文件读取操作漏洞深度解析与防护指南

《Python中文件读取操作漏洞深度解析与防护指南》在Web应用开发中,文件操作是最基础也最危险的功能之一,这篇文章将全面剖析Python环境中常见的文件读取漏洞类型,成因及防护方案,感兴趣的小伙伴可... 目录引言一、静态资源处理中的路径穿越漏洞1.1 典型漏洞场景1.2 os.path.join()的陷

Spring Boot拦截器Interceptor与过滤器Filter深度解析(区别、实现与实战指南)

《SpringBoot拦截器Interceptor与过滤器Filter深度解析(区别、实现与实战指南)》:本文主要介绍SpringBoot拦截器Interceptor与过滤器Filter深度解析... 目录Spring Boot拦截器(Interceptor)与过滤器(Filter)深度解析:区别、实现与实

MyBatis分页插件PageHelper深度解析与实践指南

《MyBatis分页插件PageHelper深度解析与实践指南》在数据库操作中,分页查询是最常见的需求之一,传统的分页方式通常有两种内存分页和SQL分页,MyBatis作为优秀的ORM框架,本身并未提... 目录1. 为什么需要分页插件?2. PageHelper简介3. PageHelper集成与配置3.