【VRP问题】基于企鹅优化算法求解冷链配送物流车辆调度优化研究(Matlab代码实现)

本文主要是介绍【VRP问题】基于企鹅优化算法求解冷链配送物流车辆调度优化研究(Matlab代码实现),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

1 概述

2 帝国企优化算法

3 运行结果

4 参考文献

5 Matlab代码实现


🎁专栏目录链接:

🌈🌈🌈🌟🌟🌟
电气代码智能算法及其应用
路径规划神经网络预测
优化调度图像处理
车间调度信号处理
浪漫的她我的哲思
数学建模

 

1 概述

在互联网的带动下,农产品冷链物流需求越来越大,而成本一直是制约冷链牧流发展的关键因素,如何有效降低冷链物流成本成为国家、企业和消费者共同关注的热点话题。与此同时,冷链物流市场的扩大以及消费者对服务品质的要求提升促使企业不得不提升自身服务质量,提高满意度来增加顾客黏性,在竞争激烈的场中占据一席之地。因此,本文的研究旨在通过合理的车辆调度和路径优化,在保证满意度处于高水平的情况下,使综合成本最低,为冷链物流企业的日常调度工作作提供依据。本文突破了仅考虑运输成本及单配送中心来优化冷链物流路径的局限性克服了传统遗传算法在求解VRP(Vehicle Routing Problem)问题的不足,提出了基于帝国企鹅优化算法求解冷链配送物流车辆调度优化研究,因而具有重要的理论和现实意义。

2 帝国企优化算法

自2018年Gaurav等[4提出帝企鹅优化算法以来,学者对初始帝企鹅优化算法进行研究并且寻求其进一步改进,希望可以将其用于不同类型的优化问题求解中。Jia等[6⒁I在帝企鹅优化算法的基础上,利用Masi嫡作为目标函数,提出一种改进帝企鹅优化算法,实验结果证明所提出的算法更适合于高维复杂卫星图像的分割。Kumar等使用基于量子的多目标帝企鹅优化算法进行自动聚类,以及应用于图像分割中。Santos等提出了多目标版本的帝企鹅优化算法,并且将提出的算法用于最佳特征选择与癌症分类。Baliarsingh 等[I将社会工程优化的莫因算法嵌入帝企鹅优化算法,增强了EPO算法的开发能力,成功的将医疗数据进行分类。Gaurav等[7]提出一个新的二元帝企鹅优化算法(BEPO)进行自动特征选择。Tang等对原始帝企鹅优化算法改进,提出一种改进EPO算法,用以优化住址建筑。Gaurav等!?"结合了多目标斑点鬣狗算法、樽海鞘群算法和帝企鹅优化算法的特征,提出新的混合多目标元启发式算法求解工程设计问题。Shrivastava将帝企鹅优化算法应用于限制使用无线电传感器网络污染的城市交通管理。

3 运行结果

这里仅展现部分图。

部分代码:

function drawPc(result1,option,data,str)    figure    hold on    legendStr=[{'车场'},{'顾客'}];    plot(data.node(data.noCenter,2),data.node(data.noCenter,3),'h','LineWidth',2,...        'MarkerEdgeColor','k',...        'MarkerFaceColor','r',...        'MarkerSize',10);    plot(data.node(data.noNode,2),data.node(data.noNode,3),'o','LineWidth',2,...        'MarkerEdgeColor','k',...        'MarkerFaceColor','g',...        'MarkerSize',10);    for i=1:length(result1.recording.Path)        path=[result1.recording.Path{i}(:,1);1];        plot(data.node(path,2),data.node(path,3),'-','LineWidth',2);        legendStr=[legendStr,{['第',num2str(i),'辆车路线']}];    end    legend(legendStr);    title([str,',求解路线,总目标:',num2str(result1.fit)]);    for i=1:length(result1.recording.Path)        figure        hold on        legendStr=[{'车场'},{'顾客'}];        plot(data.node(data.noCenter,2),data.node(data.noCenter,3),'h','LineWidth',2,...            'MarkerEdgeColor','k',...            'MarkerFaceColor','r',...            'MarkerSize',10);        plot(data.node(data.noNode,2),data.node(data.noNode,3),'o','LineWidth',2,...            'MarkerEdgeColor','k',...            'MarkerFaceColor','g',...            'MarkerSize',10);                path=[result1.recording.Path{i}(:,1);1];        plot(data.node(path,2),data.node(path,3),'-','LineWidth',2);        legendStr=[legendStr,{['第',num2str(i),'辆车路线']}];        legend(legendStr);        title([str,',第',num2str(i),'辆车路线,总目标:',num2str(result1.fit)]);    endend

function drawPc(result1,option,data,str) figure hold on legendStr=[{'车场'},{'顾客'}]; plot(data.node(data.noCenter,2),data.node(data.noCenter,3),'h','LineWidth',2,... 'MarkerEdgeColor','k',... 'MarkerFaceColor','r',... 'MarkerSize',10); plot(data.node(data.noNode,2),data.node(data.noNode,3),'o','LineWidth',2,... 'MarkerEdgeColor','k',... 'MarkerFaceColor','g',... 'MarkerSize',10); for i=1:length(result1.recording.Path) path=[result1.recording.Path{i}(:,1);1]; plot(data.node(path,2),data.node(path,3),'-','LineWidth',2); legendStr=[legendStr,{['第',num2str(i),'辆车路线']}]; end legend(legendStr); title([str,',求解路线,总目标:',num2str(result1.fit)]); for i=1:length(result1.recording.Path) figure hold on legendStr=[{'车场'},{'顾客'}]; plot(data.node(data.noCenter,2),data.node(data.noCenter,3),'h','LineWidth',2,... 'MarkerEdgeColor','k',... 'MarkerFaceColor','r',... 'MarkerSize',10); plot(data.node(data.noNode,2),data.node(data.noNode,3),'o','LineWidth',2,... 'MarkerEdgeColor','k',... 'MarkerFaceColor','g',... 'MarkerSize',10); path=[result1.recording.Path{i}(:,1);1]; plot(data.node(path,2),data.node(path,3),'-','LineWidth',2); legendStr=[legendStr,{['第',num2str(i),'辆车路线']}]; legend(legendStr); title([str,',第',num2str(i),'辆车路线,总目标:',num2str(result1.fit)]); endend

4 参考文献

部分理论来源于网络文献,如有侵权联系删除。

[1]李娜. 单亲遗传算法的冷链物流车辆路径问题(VRP)优化研究[D].燕山大学,2016.

5 Matlab代码实现

这篇关于【VRP问题】基于企鹅优化算法求解冷链配送物流车辆调度优化研究(Matlab代码实现)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/459766

相关文章

Java内存泄漏问题的排查、优化与最佳实践

《Java内存泄漏问题的排查、优化与最佳实践》在Java开发中,内存泄漏是一个常见且令人头疼的问题,内存泄漏指的是程序在运行过程中,已经不再使用的对象没有被及时释放,从而导致内存占用不断增加,最终... 目录引言1. 什么是内存泄漏?常见的内存泄漏情况2. 如何排查 Java 中的内存泄漏?2.1 使用 J

C#使用yield关键字实现提升迭代性能与效率

《C#使用yield关键字实现提升迭代性能与效率》yield关键字在C#中简化了数据迭代的方式,实现了按需生成数据,自动维护迭代状态,本文主要来聊聊如何使用yield关键字实现提升迭代性能与效率,感兴... 目录前言传统迭代和yield迭代方式对比yield延迟加载按需获取数据yield break显式示迭

Python实现高效地读写大型文件

《Python实现高效地读写大型文件》Python如何读写的是大型文件,有没有什么方法来提高效率呢,这篇文章就来和大家聊聊如何在Python中高效地读写大型文件,需要的可以了解下... 目录一、逐行读取大型文件二、分块读取大型文件三、使用 mmap 模块进行内存映射文件操作(适用于大文件)四、使用 pand

python实现pdf转word和excel的示例代码

《python实现pdf转word和excel的示例代码》本文主要介绍了python实现pdf转word和excel的示例代码,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价... 目录一、引言二、python编程1,PDF转Word2,PDF转Excel三、前端页面效果展示总结一

在MyBatis的XML映射文件中<trim>元素所有场景下的完整使用示例代码

《在MyBatis的XML映射文件中<trim>元素所有场景下的完整使用示例代码》在MyBatis的XML映射文件中,trim元素用于动态添加SQL语句的一部分,处理前缀、后缀及多余的逗号或连接符,示... 在MyBATis的XML映射文件中,<trim>元素用于动态地添加SQL语句的一部分,例如SET或W

Python xmltodict实现简化XML数据处理

《Pythonxmltodict实现简化XML数据处理》Python社区为提供了xmltodict库,它专为简化XML与Python数据结构的转换而设计,本文主要来为大家介绍一下如何使用xmltod... 目录一、引言二、XMLtodict介绍设计理念适用场景三、功能参数与属性1、parse函数2、unpa

C#实现获得某个枚举的所有名称

《C#实现获得某个枚举的所有名称》这篇文章主要为大家详细介绍了C#如何实现获得某个枚举的所有名称,文中的示例代码讲解详细,具有一定的借鉴价值,有需要的小伙伴可以参考一下... C#中获得某个枚举的所有名称using System;using System.Collections.Generic;usi

Go语言实现将中文转化为拼音功能

《Go语言实现将中文转化为拼音功能》这篇文章主要为大家详细介绍了Go语言中如何实现将中文转化为拼音功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 有这么一个需求:新用户入职 创建一系列账号比较麻烦,打算通过接口传入姓名进行初始化。想把姓名转化成拼音。因为有些账号即需要中文也需要英

C# 读写ini文件操作实现

《C#读写ini文件操作实现》本文主要介绍了C#读写ini文件操作实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录一、INI文件结构二、读取INI文件中的数据在C#应用程序中,常将INI文件作为配置文件,用于存储应用程序的

C#实现获取电脑中的端口号和硬件信息

《C#实现获取电脑中的端口号和硬件信息》这篇文章主要为大家详细介绍了C#实现获取电脑中的端口号和硬件信息的相关方法,文中的示例代码讲解详细,有需要的小伙伴可以参考一下... 我们经常在使用一个串口软件的时候,发现软件中的端口号并不是普通的COM1,而是带有硬件信息的。那么如果我们使用C#编写软件时候,如