【VRP问题】基于企鹅优化算法求解冷链配送物流车辆调度优化研究(Matlab代码实现)

本文主要是介绍【VRP问题】基于企鹅优化算法求解冷链配送物流车辆调度优化研究(Matlab代码实现),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

1 概述

2 帝国企优化算法

3 运行结果

4 参考文献

5 Matlab代码实现


🎁专栏目录链接:

🌈🌈🌈🌟🌟🌟
电气代码智能算法及其应用
路径规划神经网络预测
优化调度图像处理
车间调度信号处理
浪漫的她我的哲思
数学建模

 

1 概述

在互联网的带动下,农产品冷链物流需求越来越大,而成本一直是制约冷链牧流发展的关键因素,如何有效降低冷链物流成本成为国家、企业和消费者共同关注的热点话题。与此同时,冷链物流市场的扩大以及消费者对服务品质的要求提升促使企业不得不提升自身服务质量,提高满意度来增加顾客黏性,在竞争激烈的场中占据一席之地。因此,本文的研究旨在通过合理的车辆调度和路径优化,在保证满意度处于高水平的情况下,使综合成本最低,为冷链物流企业的日常调度工作作提供依据。本文突破了仅考虑运输成本及单配送中心来优化冷链物流路径的局限性克服了传统遗传算法在求解VRP(Vehicle Routing Problem)问题的不足,提出了基于帝国企鹅优化算法求解冷链配送物流车辆调度优化研究,因而具有重要的理论和现实意义。

2 帝国企优化算法

自2018年Gaurav等[4提出帝企鹅优化算法以来,学者对初始帝企鹅优化算法进行研究并且寻求其进一步改进,希望可以将其用于不同类型的优化问题求解中。Jia等[6⒁I在帝企鹅优化算法的基础上,利用Masi嫡作为目标函数,提出一种改进帝企鹅优化算法,实验结果证明所提出的算法更适合于高维复杂卫星图像的分割。Kumar等使用基于量子的多目标帝企鹅优化算法进行自动聚类,以及应用于图像分割中。Santos等提出了多目标版本的帝企鹅优化算法,并且将提出的算法用于最佳特征选择与癌症分类。Baliarsingh 等[I将社会工程优化的莫因算法嵌入帝企鹅优化算法,增强了EPO算法的开发能力,成功的将医疗数据进行分类。Gaurav等[7]提出一个新的二元帝企鹅优化算法(BEPO)进行自动特征选择。Tang等对原始帝企鹅优化算法改进,提出一种改进EPO算法,用以优化住址建筑。Gaurav等!?"结合了多目标斑点鬣狗算法、樽海鞘群算法和帝企鹅优化算法的特征,提出新的混合多目标元启发式算法求解工程设计问题。Shrivastava将帝企鹅优化算法应用于限制使用无线电传感器网络污染的城市交通管理。

3 运行结果

这里仅展现部分图。

部分代码:

function drawPc(result1,option,data,str)    figure    hold on    legendStr=[{'车场'},{'顾客'}];    plot(data.node(data.noCenter,2),data.node(data.noCenter,3),'h','LineWidth',2,...        'MarkerEdgeColor','k',...        'MarkerFaceColor','r',...        'MarkerSize',10);    plot(data.node(data.noNode,2),data.node(data.noNode,3),'o','LineWidth',2,...        'MarkerEdgeColor','k',...        'MarkerFaceColor','g',...        'MarkerSize',10);    for i=1:length(result1.recording.Path)        path=[result1.recording.Path{i}(:,1);1];        plot(data.node(path,2),data.node(path,3),'-','LineWidth',2);        legendStr=[legendStr,{['第',num2str(i),'辆车路线']}];    end    legend(legendStr);    title([str,',求解路线,总目标:',num2str(result1.fit)]);    for i=1:length(result1.recording.Path)        figure        hold on        legendStr=[{'车场'},{'顾客'}];        plot(data.node(data.noCenter,2),data.node(data.noCenter,3),'h','LineWidth',2,...            'MarkerEdgeColor','k',...            'MarkerFaceColor','r',...            'MarkerSize',10);        plot(data.node(data.noNode,2),data.node(data.noNode,3),'o','LineWidth',2,...            'MarkerEdgeColor','k',...            'MarkerFaceColor','g',...            'MarkerSize',10);                path=[result1.recording.Path{i}(:,1);1];        plot(data.node(path,2),data.node(path,3),'-','LineWidth',2);        legendStr=[legendStr,{['第',num2str(i),'辆车路线']}];        legend(legendStr);        title([str,',第',num2str(i),'辆车路线,总目标:',num2str(result1.fit)]);    endend

function drawPc(result1,option,data,str) figure hold on legendStr=[{'车场'},{'顾客'}]; plot(data.node(data.noCenter,2),data.node(data.noCenter,3),'h','LineWidth',2,... 'MarkerEdgeColor','k',... 'MarkerFaceColor','r',... 'MarkerSize',10); plot(data.node(data.noNode,2),data.node(data.noNode,3),'o','LineWidth',2,... 'MarkerEdgeColor','k',... 'MarkerFaceColor','g',... 'MarkerSize',10); for i=1:length(result1.recording.Path) path=[result1.recording.Path{i}(:,1);1]; plot(data.node(path,2),data.node(path,3),'-','LineWidth',2); legendStr=[legendStr,{['第',num2str(i),'辆车路线']}]; end legend(legendStr); title([str,',求解路线,总目标:',num2str(result1.fit)]); for i=1:length(result1.recording.Path) figure hold on legendStr=[{'车场'},{'顾客'}]; plot(data.node(data.noCenter,2),data.node(data.noCenter,3),'h','LineWidth',2,... 'MarkerEdgeColor','k',... 'MarkerFaceColor','r',... 'MarkerSize',10); plot(data.node(data.noNode,2),data.node(data.noNode,3),'o','LineWidth',2,... 'MarkerEdgeColor','k',... 'MarkerFaceColor','g',... 'MarkerSize',10); path=[result1.recording.Path{i}(:,1);1]; plot(data.node(path,2),data.node(path,3),'-','LineWidth',2); legendStr=[legendStr,{['第',num2str(i),'辆车路线']}]; legend(legendStr); title([str,',第',num2str(i),'辆车路线,总目标:',num2str(result1.fit)]); endend

4 参考文献

部分理论来源于网络文献,如有侵权联系删除。

[1]李娜. 单亲遗传算法的冷链物流车辆路径问题(VRP)优化研究[D].燕山大学,2016.

5 Matlab代码实现

这篇关于【VRP问题】基于企鹅优化算法求解冷链配送物流车辆调度优化研究(Matlab代码实现)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/459766

相关文章

Vue3 的 shallowRef 和 shallowReactive:优化性能

大家对 Vue3 的 ref 和 reactive 都很熟悉,那么对 shallowRef 和 shallowReactive 是否了解呢? 在编程和数据结构中,“shallow”(浅层)通常指对数据结构的最外层进行操作,而不递归地处理其内部或嵌套的数据。这种处理方式关注的是数据结构的第一层属性或元素,而忽略更深层次的嵌套内容。 1. 浅层与深层的对比 1.1 浅层(Shallow) 定义

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

HDFS—存储优化(纠删码)

纠删码原理 HDFS 默认情况下,一个文件有3个副本,这样提高了数据的可靠性,但也带来了2倍的冗余开销。 Hadoop3.x 引入了纠删码,采用计算的方式,可以节省约50%左右的存储空间。 此种方式节约了空间,但是会增加 cpu 的计算。 纠删码策略是给具体一个路径设置。所有往此路径下存储的文件,都会执行此策略。 默认只开启对 RS-6-3-1024k

好题——hdu2522(小数问题:求1/n的第一个循环节)

好喜欢这题,第一次做小数问题,一开始真心没思路,然后参考了网上的一些资料。 知识点***********************************无限不循环小数即无理数,不能写作两整数之比*****************************(一开始没想到,小学没学好) 此题1/n肯定是一个有限循环小数,了解这些后就能做此题了。 按照除法的机制,用一个函数表示出来就可以了,代码如下

hdu1043(八数码问题,广搜 + hash(实现状态压缩) )

利用康拓展开将一个排列映射成一个自然数,然后就变成了普通的广搜题。 #include<iostream>#include<algorithm>#include<string>#include<stack>#include<queue>#include<map>#include<stdio.h>#include<stdlib.h>#include<ctype.h>#inclu

康拓展开(hash算法中会用到)

康拓展开是一个全排列到一个自然数的双射(也就是某个全排列与某个自然数一一对应) 公式: X=a[n]*(n-1)!+a[n-1]*(n-2)!+...+a[i]*(i-1)!+...+a[1]*0! 其中,a[i]为整数,并且0<=a[i]<i,1<=i<=n。(a[i]在不同应用中的含义不同); 典型应用: 计算当前排列在所有由小到大全排列中的顺序,也就是说求当前排列是第

使用opencv优化图片(画面变清晰)

文章目录 需求影响照片清晰度的因素 实现降噪测试代码 锐化空间锐化Unsharp Masking频率域锐化对比测试 对比度增强常用算法对比测试 需求 对图像进行优化,使其看起来更清晰,同时保持尺寸不变,通常涉及到图像处理技术如锐化、降噪、对比度增强等 影响照片清晰度的因素 影响照片清晰度的因素有很多,主要可以从以下几个方面来分析 1. 拍摄设备 相机传感器:相机传

csu 1446 Problem J Modified LCS (扩展欧几里得算法的简单应用)

这是一道扩展欧几里得算法的简单应用题,这题是在湖南多校训练赛中队友ac的一道题,在比赛之后请教了队友,然后自己把它a掉 这也是自己独自做扩展欧几里得算法的题目 题意:把题意转变下就变成了:求d1*x - d2*y = f2 - f1的解,很明显用exgcd来解 下面介绍一下exgcd的一些知识点:求ax + by = c的解 一、首先求ax + by = gcd(a,b)的解 这个

综合安防管理平台LntonAIServer视频监控汇聚抖动检测算法优势

LntonAIServer视频质量诊断功能中的抖动检测是一个专门针对视频稳定性进行分析的功能。抖动通常是指视频帧之间的不必要运动,这种运动可能是由于摄像机的移动、传输中的错误或编解码问题导致的。抖动检测对于确保视频内容的平滑性和观看体验至关重要。 优势 1. 提高图像质量 - 清晰度提升:减少抖动,提高图像的清晰度和细节表现力,使得监控画面更加真实可信。 - 细节增强:在低光条件下,抖

【数据结构】——原来排序算法搞懂这些就行,轻松拿捏

前言:快速排序的实现最重要的是找基准值,下面让我们来了解如何实现找基准值 基准值的注释:在快排的过程中,每一次我们要取一个元素作为枢纽值,以这个数字来将序列划分为两部分。 在此我们采用三数取中法,也就是取左端、中间、右端三个数,然后进行排序,将中间数作为枢纽值。 快速排序实现主框架: //快速排序 void QuickSort(int* arr, int left, int rig