【VRP问题】基于企鹅优化算法求解冷链配送物流车辆调度优化研究(Matlab代码实现)

本文主要是介绍【VRP问题】基于企鹅优化算法求解冷链配送物流车辆调度优化研究(Matlab代码实现),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

1 概述

2 帝国企优化算法

3 运行结果

4 参考文献

5 Matlab代码实现


🎁专栏目录链接:

🌈🌈🌈🌟🌟🌟
电气代码智能算法及其应用
路径规划神经网络预测
优化调度图像处理
车间调度信号处理
浪漫的她我的哲思
数学建模

 

1 概述

在互联网的带动下,农产品冷链物流需求越来越大,而成本一直是制约冷链牧流发展的关键因素,如何有效降低冷链物流成本成为国家、企业和消费者共同关注的热点话题。与此同时,冷链物流市场的扩大以及消费者对服务品质的要求提升促使企业不得不提升自身服务质量,提高满意度来增加顾客黏性,在竞争激烈的场中占据一席之地。因此,本文的研究旨在通过合理的车辆调度和路径优化,在保证满意度处于高水平的情况下,使综合成本最低,为冷链物流企业的日常调度工作作提供依据。本文突破了仅考虑运输成本及单配送中心来优化冷链物流路径的局限性克服了传统遗传算法在求解VRP(Vehicle Routing Problem)问题的不足,提出了基于帝国企鹅优化算法求解冷链配送物流车辆调度优化研究,因而具有重要的理论和现实意义。

2 帝国企优化算法

自2018年Gaurav等[4提出帝企鹅优化算法以来,学者对初始帝企鹅优化算法进行研究并且寻求其进一步改进,希望可以将其用于不同类型的优化问题求解中。Jia等[6⒁I在帝企鹅优化算法的基础上,利用Masi嫡作为目标函数,提出一种改进帝企鹅优化算法,实验结果证明所提出的算法更适合于高维复杂卫星图像的分割。Kumar等使用基于量子的多目标帝企鹅优化算法进行自动聚类,以及应用于图像分割中。Santos等提出了多目标版本的帝企鹅优化算法,并且将提出的算法用于最佳特征选择与癌症分类。Baliarsingh 等[I将社会工程优化的莫因算法嵌入帝企鹅优化算法,增强了EPO算法的开发能力,成功的将医疗数据进行分类。Gaurav等[7]提出一个新的二元帝企鹅优化算法(BEPO)进行自动特征选择。Tang等对原始帝企鹅优化算法改进,提出一种改进EPO算法,用以优化住址建筑。Gaurav等!?"结合了多目标斑点鬣狗算法、樽海鞘群算法和帝企鹅优化算法的特征,提出新的混合多目标元启发式算法求解工程设计问题。Shrivastava将帝企鹅优化算法应用于限制使用无线电传感器网络污染的城市交通管理。

3 运行结果

这里仅展现部分图。

部分代码:

function drawPc(result1,option,data,str)    figure    hold on    legendStr=[{'车场'},{'顾客'}];    plot(data.node(data.noCenter,2),data.node(data.noCenter,3),'h','LineWidth',2,...        'MarkerEdgeColor','k',...        'MarkerFaceColor','r',...        'MarkerSize',10);    plot(data.node(data.noNode,2),data.node(data.noNode,3),'o','LineWidth',2,...        'MarkerEdgeColor','k',...        'MarkerFaceColor','g',...        'MarkerSize',10);    for i=1:length(result1.recording.Path)        path=[result1.recording.Path{i}(:,1);1];        plot(data.node(path,2),data.node(path,3),'-','LineWidth',2);        legendStr=[legendStr,{['第',num2str(i),'辆车路线']}];    end    legend(legendStr);    title([str,',求解路线,总目标:',num2str(result1.fit)]);    for i=1:length(result1.recording.Path)        figure        hold on        legendStr=[{'车场'},{'顾客'}];        plot(data.node(data.noCenter,2),data.node(data.noCenter,3),'h','LineWidth',2,...            'MarkerEdgeColor','k',...            'MarkerFaceColor','r',...            'MarkerSize',10);        plot(data.node(data.noNode,2),data.node(data.noNode,3),'o','LineWidth',2,...            'MarkerEdgeColor','k',...            'MarkerFaceColor','g',...            'MarkerSize',10);                path=[result1.recording.Path{i}(:,1);1];        plot(data.node(path,2),data.node(path,3),'-','LineWidth',2);        legendStr=[legendStr,{['第',num2str(i),'辆车路线']}];        legend(legendStr);        title([str,',第',num2str(i),'辆车路线,总目标:',num2str(result1.fit)]);    endend

function drawPc(result1,option,data,str) figure hold on legendStr=[{'车场'},{'顾客'}]; plot(data.node(data.noCenter,2),data.node(data.noCenter,3),'h','LineWidth',2,... 'MarkerEdgeColor','k',... 'MarkerFaceColor','r',... 'MarkerSize',10); plot(data.node(data.noNode,2),data.node(data.noNode,3),'o','LineWidth',2,... 'MarkerEdgeColor','k',... 'MarkerFaceColor','g',... 'MarkerSize',10); for i=1:length(result1.recording.Path) path=[result1.recording.Path{i}(:,1);1]; plot(data.node(path,2),data.node(path,3),'-','LineWidth',2); legendStr=[legendStr,{['第',num2str(i),'辆车路线']}]; end legend(legendStr); title([str,',求解路线,总目标:',num2str(result1.fit)]); for i=1:length(result1.recording.Path) figure hold on legendStr=[{'车场'},{'顾客'}]; plot(data.node(data.noCenter,2),data.node(data.noCenter,3),'h','LineWidth',2,... 'MarkerEdgeColor','k',... 'MarkerFaceColor','r',... 'MarkerSize',10); plot(data.node(data.noNode,2),data.node(data.noNode,3),'o','LineWidth',2,... 'MarkerEdgeColor','k',... 'MarkerFaceColor','g',... 'MarkerSize',10); path=[result1.recording.Path{i}(:,1);1]; plot(data.node(path,2),data.node(path,3),'-','LineWidth',2); legendStr=[legendStr,{['第',num2str(i),'辆车路线']}]; legend(legendStr); title([str,',第',num2str(i),'辆车路线,总目标:',num2str(result1.fit)]); endend

4 参考文献

部分理论来源于网络文献,如有侵权联系删除。

[1]李娜. 单亲遗传算法的冷链物流车辆路径问题(VRP)优化研究[D].燕山大学,2016.

5 Matlab代码实现

这篇关于【VRP问题】基于企鹅优化算法求解冷链配送物流车辆调度优化研究(Matlab代码实现)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/459766

相关文章

使用Python实现矢量路径的压缩、解压与可视化

《使用Python实现矢量路径的压缩、解压与可视化》在图形设计和Web开发中,矢量路径数据的高效存储与传输至关重要,本文将通过一个Python示例,展示如何将复杂的矢量路径命令序列压缩为JSON格式,... 目录引言核心功能概述1. 路径命令解析2. 路径数据压缩3. 路径数据解压4. 可视化代码实现详解1

PyQt6/PySide6中QTableView类的实现

《PyQt6/PySide6中QTableView类的实现》本文主要介绍了PyQt6/PySide6中QTableView类的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学... 目录1. 基本概念2. 创建 QTableView 实例3. QTableView 的常用属性和方法

PyQt6/PySide6中QTreeView类的实现

《PyQt6/PySide6中QTreeView类的实现》QTreeView是PyQt6或PySide6库中用于显示分层数据的控件,本文主要介绍了PyQt6/PySide6中QTreeView类的实现... 目录1. 基本概念2. 创建 QTreeView 实例3. QTreeView 的常用属性和方法属性

Android使用ImageView.ScaleType实现图片的缩放与裁剪功能

《Android使用ImageView.ScaleType实现图片的缩放与裁剪功能》ImageView是最常用的控件之一,它用于展示各种类型的图片,为了能够根据需求调整图片的显示效果,Android提... 目录什么是 ImageView.ScaleType?FIT_XYFIT_STARTFIT_CENTE

Spring 中的循环引用问题解决方法

《Spring中的循环引用问题解决方法》:本文主要介绍Spring中的循环引用问题解决方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录什么是循环引用?循环依赖三级缓存解决循环依赖二级缓存三级缓存本章来聊聊Spring 中的循环引用问题该如何解决。这里聊

pandas中位数填充空值的实现示例

《pandas中位数填充空值的实现示例》中位数填充是一种简单而有效的方法,用于填充数据集中缺失的值,本文就来介绍一下pandas中位数填充空值的实现,具有一定的参考价值,感兴趣的可以了解一下... 目录什么是中位数填充?为什么选择中位数填充?示例数据结果分析完整代码总结在数据分析和机器学习过程中,处理缺失数

Golang HashMap实现原理解析

《GolangHashMap实现原理解析》HashMap是一种基于哈希表实现的键值对存储结构,它通过哈希函数将键映射到数组的索引位置,支持高效的插入、查找和删除操作,:本文主要介绍GolangH... 目录HashMap是一种基于哈希表实现的键值对存储结构,它通过哈希函数将键映射到数组的索引位置,支持

Pandas使用AdaBoost进行分类的实现

《Pandas使用AdaBoost进行分类的实现》Pandas和AdaBoost分类算法,可以高效地进行数据预处理和分类任务,本文主要介绍了Pandas使用AdaBoost进行分类的实现,具有一定的参... 目录什么是 AdaBoost?使用 AdaBoost 的步骤安装必要的库步骤一:数据准备步骤二:模型

Spring Boot中JSON数值溢出问题从报错到优雅解决办法

《SpringBoot中JSON数值溢出问题从报错到优雅解决办法》:本文主要介绍SpringBoot中JSON数值溢出问题从报错到优雅的解决办法,通过修改字段类型为Long、添加全局异常处理和... 目录一、问题背景:为什么我的接口突然报错了?二、为什么会发生这个错误?1. Java 数据类型的“容量”限制

使用Pandas进行均值填充的实现

《使用Pandas进行均值填充的实现》缺失数据(NaN值)是一个常见的问题,我们可以通过多种方法来处理缺失数据,其中一种常用的方法是均值填充,本文主要介绍了使用Pandas进行均值填充的实现,感兴趣的... 目录什么是均值填充?为什么选择均值填充?均值填充的步骤实际代码示例总结在数据分析和处理过程中,缺失数