MPC模型预测控制理论与实践

2023-12-05 20:44

本文主要是介绍MPC模型预测控制理论与实践,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、基本概念

最有控制的动机是在约束条件下达到最优的系统表现。

模型预测控制(MPC,Model Predictive Control)是通过模型来预测系统在某一未来时间段内的表现来进行优化控制,多用于数位控制,通常用离散型状态空间表达。主要有三个主要部分构成,1模型;2预测;3控制(做决策)。模型,模型可以是机理模型,也可以是一个基于数据的模型。(例如深度学习训练得到的模型)预测,建立一个模型目的主要是用来做预测。控制(做决策),控制就是需要做出动作了,控制就是采取行动执行动作。

MPC主要有三步:

在k时刻:

1、估计/测量读取当前系统状态;

2、基于u_k,u_{k+1},...,u_{k+N}来进行最优化,离散系统代价函数为

J=\sum_k^{N-1}(E_k^TQE_k+u_k^TRu_k)+E_N^TFE_N

3、只取u_k作为控制输入施加在系统上。

在下一时刻重复以上三步,在下一步进行预测时使用的就是下一步的状态值,即滚动优化控制。

二、理论原理

1、二次规划的一般形式:

\begin{aligned}\min_x&&q(x)=z^TQz+C^Tz\\s.t.&&a_i^Tz\geq b_i,\quad i\in\tau\end{aligned}

二次规划问题目前的优化理论提供了较完整的求解方法,可以利用诸多工具进行求解。这里的MPC问题最后能够归结为求解一个二次规划问题,即最小化代价函数。

2、MPC代价函数

对于一个离散系统

x(k+1)=Ax(k)+Bu(k)

在k时刻进行观测,预测从k到N时刻的状态X_k为:

X_k=\begin{pmatrix}x(k|k)\\x(k+1|k)\\x(k+2|k)\\\cdots\\x(k+N|k)\end{pmatrix}

输入U_k为:

U_k=\begin{pmatrix}u(k|k)\\u(k+1|k)\\u(k+2|k)\\\cdots\\u(k+N-1|k)\end{pmatrix}

离散系统的代价函数为:

J=\sum_{i=0}^{N1}\left(x(k+i|k)\right.^TQx(k+i|k)+u(k+i|k)^TRu(k+i|k))\\ +x(k+N)^TFx(k+N)

我们需要求解的是系统的输入u(k+i|k),这就需要我们把状态项x(k+i|k)给消除掉。可以通过传感器或者状态估计得到系统当前的状态值,利用系统初始条件x(k|k)=x_k,以及上述离散状态方程,可以得到所有状态量用输入和初始值表达的形式:

X_k=\begin{pmatrix}I\\A\\A^2\\\cdots\\A^N\end{pmatrix}x(k)+\begin{pmatrix}0&0&\ldots&0\\B&0&\ldots&0\\AB&B&\ldots&0\\\ldots&\ldots&\ldots&\ldots\\A^{N-1}B&A^{N-2}B&\ldots&B\end{pmatrix}U_k

M=\begin{bmatrix} I_{​{n\times n}} \\A_{​{n\times n}} \\A_{​{n\times n}}^2 \\. \\. \\A^N\ \end{bmatrix}$C=\begin{bmatrix}0&0&...&0\\\vdots&\vdots&...&\vdots\\0&0&&0\\B&0&...&0\\AB&B&...&0\\\vdots&\vdots&\ddots&0\\A^{N-1}B&A^{N-2}B&...&B\end{bmatrix}$,则有

{X_k}={Mx_k}+{CU_k}

代价函数可以化简为:

$\begin{aligned} &J=\sum_{i=0}^{N-1}\left(x(k+i|k)^TQx(k+i|k)\right.+u(k+i|k)^TRu(k+i|k)+x(k+N)^TFx(k+N)) \\ &\left.=\left(\begin{array}{c}x(k|k)\\x(k+1|k)\\x(k+2|k)\\\cdots\\x(k+N|k)\end{array}\right.\right)\left(\begin{array}{ccccc}Q&&&\\&Q&&\\&&Q&\\&&\cdots&\cdots&\cdots\\\cdots&\cdots&\cdots&\cdots&\cdots\\&&&&F\end{array}\right)\left(\begin{array}{c}x(k|k)\\x(k+1|k)\\x(k+2|k)\\\cdots\\\cdots\\x(k+N|k)\end{array}\right)^T \\ &\left.+U_k^T\left(\begin{array}{rrrrr}R&&&&\\&R&&&\\&&R&&\\\cdots&\cdots&\cdots&\cdots&\cdots\\&&&&R\end{array}\right.\right)U_k \end{aligned}$

$J=X_k^T\overline{Q}X_k+U_k^T\overline{R}U_k$

进一步可以化简为

J=x{_k}^TGx{_k}+U_k^THU_k+2x{_k}^TEU_k

其中$M^T\overline{Q}M=G,M^T\overline{Q}C=E,C^T\overline{Q}C+\overline{R}=H$

该代价函数可以利用二次规划进行优化。

三、代码实践

问题:

1、MPC_Test.m

%% 清屏clear ; close all; clc;%% 加载 optim package,若使用matlab,则注释掉此行pkg load optim;%%%%%%%%%%%%%%%%%%%%%%%%%%%% 第一步,定义状态空间矩阵%% 定义状态矩阵 A, n x n 矩阵A = [1 0.1; -1 2];n= size (A,1);%% 定义输入矩阵 B, n x p 矩阵B = [ 0.2 1; 0.5 2];p = size(B,2);%% 定义Q矩阵,n x n 矩阵Q=[100 0;0 1];%% 定义F矩阵,n x n 矩阵F=[100 0;0 1];%% 定义R矩阵,p x p 矩阵R=[1 0 ;0 .1];%% 定义step数量kk_steps=100; %% 定义矩阵 X_K, n x k 矩 阵X_K = zeros(n,k_steps);%% 初始状态变量值, n x 1 向量X_K(:,1) =[20;-20];%% 定义输入矩阵 U_K, p x k 矩阵U_K=zeros(p,k_steps);%% 定义预测区间KN=5;%% Call MPC_Matrices 函数 求得 E,H矩阵 [E,H]=MPC_Matrices(A,B,Q,R,F,N);%% 计算每一步的状态变量的值for k = 1 : k_steps %% 求得U_K(:,k)U_K(:,k) = Prediction(X_K(:,k),E,H,N,p);%% 计算第k+1步时状态变量的值X_K(:,k+1)=(A*X_K(:,k)+B*U_K(:,k));end%% 绘制状态变量和输入的变化subplot  (2, 1, 1);hold;for i =1 :size (X_K,1)plot (X_K(i,:));endlegend("x1","x2")hold off;subplot (2, 1, 2);hold;for i =1 : size (U_K,1)plot (U_K(i,:));endlegend("u1","u2")

2、MPC_Matrices.m


function  [E , H]=MPC_Matrices(A,B,Q,R,F,N)n=size(A,1);   % A 是 n x n 矩阵, 得到 np=size(B,2);   % B 是 n x p 矩阵, 得到 p%%%%%%%%%%%%M=[eye(n);zeros(N*n,n)]; % 初始化 M 矩阵. M 矩阵是 (N+1)n x n的, % 它上面是 n x n 个 "I", 这一步先把下半部% 分写成 0 C=zeros((N+1)*n,N*p); % 初始化 C 矩阵, 这一步令它有 (N+1)n x NP 个 0% 定义M 和 C tmp=eye(n);  %定义一个n x n 的 I 矩阵% 更新M和Cfor i=1:N % 循环,i 从 1到 Nrows =i*n+(1:n); %定义当前行数,从i x n开始,共n行 C(rows,:)=[tmp*B,C(rows-n, 1:end-p)]; %将c矩阵填满tmp= A*tmp; %每一次将tmp左乘一次AM(rows,:)=tmp; %将M矩阵写满end % 定义Q_bar和R_barQ_bar = kron(eye(N),Q);Q_bar = blkdiag(Q_bar,F);R_bar = kron(eye(N),R); % 计算G, E, HG=M'*Q_bar*M; % G: n x nE=C'*Q_bar*M; % E: NP x nH=C'*Q_bar*C+R_bar; % NP x NP end

3、Prediction.m


function u_k= Prediction(x_k,E,H,N,p)U_k = zeros(N*p,1); % NP x 1U_k = quadprog(H,E*x_k);u_k = U_k(1:p,1); % 取第一个结果end

四、应用总结

模型预测控制(Model Predictive Control, MPC)是一种先进的闭环控制算法,它通过建立系统的数学模型,预测未来一定时间内的系统状态,并基于优化算法计算出最优控制信号。MPC具有以下优缺点:

优点:

  1. 高精度控制:除了考虑当前系统状态外,还能预测未来一段时间的系统状态,因此可以更精确地控制系统;

  2. 鲁棒性强:MPC可以通过修改控制器优化问题的约束来应对外部干扰和不确定性,提高控制系统的鲁棒性;

  3. 可处理复杂系统:MPC可以建立各种复杂系统的数学模型,并通过计算机算法进行优化,适用于多变量、非线性系统等;

  4. 可满足控制要求:MPC可以将多个控制要求统一优化,因此可以满足多个控制目标同时达到。

缺点:

  1. 计算复杂:MPC优化问题通常是一个非凸、非线性的问题,要求大量的计算资源和高效的算法,导致计算复杂度很高;

  2. 运行速度慢:由于计算复杂度高,MPC的运行速度相比其他控制算法要慢很多,因此只能应用于响应速度要求不高的稳态控制系统;

  3. 受模型误差影响:MPC算法是基于系统模型来进行优化的,因此系统模型误差会直接影响算法控制效果。因此,建立准确的系统模型是MPC算法应用的关键。

MPC主要还是应用在控制领域,在自动驾驶、无人机飞行控制、平衡车的控制、四足控制中有着广泛的应用。MPC这种将优化与控制结合的思想也许可以用在更多领域

参考资料:

【【MPC模型预测控制器】1_最优化控制和基本概念】 https://www.bilibili.com/video/BV1cL411n7KV/?share_source=copy_web&vd_source=24db73a73cddacddda48febd1ffc28ef

网络资料等。

这篇关于MPC模型预测控制理论与实践的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/459067

相关文章

SpringBoot请求参数接收控制指南分享

《SpringBoot请求参数接收控制指南分享》:本文主要介绍SpringBoot请求参数接收控制指南,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录Spring Boot 请求参数接收控制指南1. 概述2. 有注解时参数接收方式对比3. 无注解时接收参数默认位置

Spring Boot 整合 SSE的高级实践(Server-Sent Events)

《SpringBoot整合SSE的高级实践(Server-SentEvents)》SSE(Server-SentEvents)是一种基于HTTP协议的单向通信机制,允许服务器向浏览器持续发送实... 目录1、简述2、Spring Boot 中的SSE实现2.1 添加依赖2.2 实现后端接口2.3 配置超时时

Python使用getopt处理命令行参数示例解析(最佳实践)

《Python使用getopt处理命令行参数示例解析(最佳实践)》getopt模块是Python标准库中一个简单但强大的命令行参数处理工具,它特别适合那些需要快速实现基本命令行参数解析的场景,或者需要... 目录为什么需要处理命令行参数?getopt模块基础实际应用示例与其他参数处理方式的比较常见问http

Spring Security+JWT如何实现前后端分离权限控制

《SpringSecurity+JWT如何实现前后端分离权限控制》本篇将手把手教你用SpringSecurity+JWT搭建一套完整的登录认证与权限控制体系,具有很好的参考价值,希望对大家... 目录Spring Security+JWT实现前后端分离权限控制实战一、为什么要用 JWT?二、JWT 基本结构

Android实现两台手机屏幕共享和远程控制功能

《Android实现两台手机屏幕共享和远程控制功能》在远程协助、在线教学、技术支持等多种场景下,实时获得另一部移动设备的屏幕画面,并对其进行操作,具有极高的应用价值,本项目旨在实现两台Android手... 目录一、项目概述二、相关知识2.1 MediaProjection API2.2 Socket 网络

Java Optional的使用技巧与最佳实践

《JavaOptional的使用技巧与最佳实践》在Java中,Optional是用于优雅处理null的容器类,其核心目标是显式提醒开发者处理空值场景,避免NullPointerExce... 目录一、Optional 的核心用途二、使用技巧与最佳实践三、常见误区与反模式四、替代方案与扩展五、总结在 Java

Spring Boot循环依赖原理、解决方案与最佳实践(全解析)

《SpringBoot循环依赖原理、解决方案与最佳实践(全解析)》循环依赖指两个或多个Bean相互直接或间接引用,形成闭环依赖关系,:本文主要介绍SpringBoot循环依赖原理、解决方案与最... 目录一、循环依赖的本质与危害1.1 什么是循环依赖?1.2 核心危害二、Spring的三级缓存机制2.1 三

Python 中的 with open文件操作的最佳实践

《Python中的withopen文件操作的最佳实践》在Python中,withopen()提供了一个简洁而安全的方式来处理文件操作,它不仅能确保文件在操作完成后自动关闭,还能处理文件操作中的异... 目录什么是 with open()?为什么使用 with open()?使用 with open() 进行

Spring Security基于数据库的ABAC属性权限模型实战开发教程

《SpringSecurity基于数据库的ABAC属性权限模型实战开发教程》:本文主要介绍SpringSecurity基于数据库的ABAC属性权限模型实战开发教程,本文给大家介绍的非常详细,对大... 目录1. 前言2. 权限决策依据RBACABAC综合对比3. 数据库表结构说明4. 实战开始5. MyBA

用js控制视频播放进度基本示例代码

《用js控制视频播放进度基本示例代码》写前端的时候,很多的时候是需要支持要网页视频播放的功能,下面这篇文章主要给大家介绍了关于用js控制视频播放进度的相关资料,文中通过代码介绍的非常详细,需要的朋友可... 目录前言html部分:JavaScript部分:注意:总结前言在javascript中控制视频播放