【自然语言处理】BOW和TF-IDF详解

2023-12-05 16:40

本文主要是介绍【自然语言处理】BOW和TF-IDF详解,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

BOW 和 TF-IDF 详解

机器无法处理原始形式的文本数据。我们需要将文本分解成一种易于机器阅读的数字格式(自然语言处理背后的理念!)。BOW 和 TF-IDF 都是帮助我们将文本句子转换为向量的技术。

我将用一个流行的例子来解释本文中的 Bag-of-Words(BOW)和 TF-IDF。

我们都喜欢看电影。在我决定看一部电影之前,我总是先看它的影评。我知道你们很多人也这么做!所以,我在这里用这个例子。以下是关于某部恐怖电影的评论示例:

  • 评论一:This movie is very scary and long.
  • 评论二:This movie is not scary and is slow.
  • 评论三:This movie is spooky and good.

你可以看到关于这部电影的一些对比评论,以及电影的长度和节奏。想象一下看一千篇这样的评论是多么枯燥。显然,我们可以从中汲取很多有趣的东西,并以此为基础来衡量电影的表现。

然而,正如我们在上面看到的,我们不能简单地把这些句子交给机器学习模型,让它告诉我们一篇评论是正面的还是负面的。我们需要执行某些文本预处理步骤。

BOW 和 TF-IDF 就是两个这样做的例子。让我们详细了解一下。

1.BOW

词袋(BOW)模型是数字文本表示的最简单形式。像单词本身一样,我们可以将一个句子表示为一个词包(一个数字串)。

让我们回顾一下我们之前看到的三种类型的电影评论:

  • 评论一:This movie is very scary and long.
  • 评论二:This movie is not scary and is slow.
  • 评论三:This movie is spooky and good.

我们将首先从以上三篇评论中所有的独特词汇中构建一个词汇表。词汇表由这 11 11 11 个单词组成:“This”、“movie”、“is”、“very”、“stear”、“and”、“long”、“not”、“slow”、“spooky”、“good”。

现在,我们可以将这些单词中的每一个用 1 1 1 0 0 0 标记在上面的三个电影评论中。这将为我们提供三个用于三个评论的向量:

在这里插入图片描述

  • 评论向量1:[1 1 1 1 1 1 1 0 0 0 0]
  • 评论向量2:[1 1 2 0 0 1 1 0 1 0 0]
  • 评论向量3:[1 1 1 0 0 0 1 0 0 1 1]

这就是词袋(BOW)模型背后的核心思想。

在上面的例子中,我们可以得到长度为 11 11 11 的向量。然而,当我们遇到新的句子时,我们开始面临一些问题:

  • 如果新句子包含新词,那么我们的词汇量就会增加,因此向量的长度也会增加。
  • 此外,向量还包含许多 0 0 0,从而产生稀疏矩阵(这是我们希望避免的)。
  • 我们没有保留任何关于句子语法和文本中单词顺序的信息。

2.TF-IDF

TF-IDF 是一种用于信息检索与数据挖掘的常用加权技术。TF 是词频(Term Frequency),IDF 是逆文本频率指数(Inverse Document Frequency)。

评论 2 2 2: This movie is not scary and is slow.

T F ( ′ t h i s ′ ) = 评论 2 中出现 t h i s 的次数 评论 2 中的单词数 = 1 8 TF('this')=\frac{评论2中出现this的次数}{评论2中的单词数}=\frac{1}{8} TF(this)=评论2中的单词数评论2中出现this的次数=81

我们可以这样计算所有评论的词频:

在这里插入图片描述
我们可以计算评论 2 2 2 中所有单词的 IDF 值:

I D F ( ′ t h i s ′ ) = l o g 文档数 包含 t h i s 一词的文档数 = l o g 3 3 = l o g ( 1 ) = 0 IDF('this')=log\frac{文档数}{包含 this 一词的文档数}=log\frac{3}{3}=log(1)=0 IDF(this)=log包含this一词的文档数文档数=log33=log(1)=0

在这里插入图片描述
因此,我们看到 “is”、“this”、“and” 等词被降为0,代表重要性很小;而 “scary”、“long”、“good” 等词则更为重要,因而具有更高的权值。

我们现在可以计算语料库中每个单词的 TF-IDF 分数。分数越高的单词越重要,分数越低的单词越不重要: ( t f _ i d f ) t , d = t f t , d × i d f t (tf\_idf)_{t,d}=tf_{t,d}×idf_t (tf_idf)t,d=tft,d×idft T F − I D F ( ‘ t h i s ’ , R e v i e w 2 ) = T F ( ‘ t h i s ’ , R e v i e w 2 ) × I D F ( ‘ t h i s ’ ) = 1 8 × 0 = 0 TF-IDF(‘this’, Review 2) = TF(‘this’, Review 2)×IDF(‘this’) = \frac{1}{8}×0 = 0 TFIDF(this,Review2)=TF(this,Review2)×IDF(this)=81×0=0
在这里插入图片描述
我们现在已经获得了我们词汇的 TF-IDF 分数。TF-IDF 还为频率较低的单词提供较大的值,并且当 IDF 和 TF 值都较高时,该值较高。TF-IDF 分值高代表该单词在所有文档中都很少见,但在单个文档中很常见。

总结一下我们在文章中所讨论的内容:

  • 词袋只创建一组向量,其中包含文档中的单词出现次数,而 TF-IDF 模型还包含关于更重要的单词和不重要的单词的信息。
  • 词袋向量很容易解释。然而,在机器学习模型中,TF-IDF 通常表现得更好。

虽然 “BOW” 和 “TF-IDF” 在各自方面都很受欢迎,但在理解文字背景方面仍然存在空白。检测单词 “spooky” 和 “scary” 之间的相似性,或者将给定的文档翻译成另一种语言,需要更多关于文档的信息。

这就有关于 Word2Vec、CBOW、Skip-Gram 等词嵌入技术的由来。

这篇关于【自然语言处理】BOW和TF-IDF详解的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/458328

相关文章

Windows命令之tasklist命令用法详解(Windows查看进程)

《Windows命令之tasklist命令用法详解(Windows查看进程)》tasklist命令显示本地计算机或远程计算机上当前正在运行的进程列表,命令结合筛选器一起使用,可以按照我们的需求进行过滤... 目录命令帮助1、基本使用2、执行原理2.1、tasklist命令无法使用3、筛选器3.1、根据PID

MySql中的数据库连接池详解

《MySql中的数据库连接池详解》:本文主要介绍MySql中的数据库连接池方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录mysql数据库连接池1、概念2、为什么会出现数据库连接池3、原理4、数据库连接池的提供商5、DataSource数据源6、DBCP7、C

Spring-AOP-ProceedingJoinPoint的使用详解

《Spring-AOP-ProceedingJoinPoint的使用详解》:本文主要介绍Spring-AOP-ProceedingJoinPoint的使用方式,具有很好的参考价值,希望对大家有所帮... 目录ProceedingJoinPoijsnt简介获取环绕通知方法的相关信息1.proceed()2.g

一文详解kafka开启kerberos认证的完整步骤

《一文详解kafka开启kerberos认证的完整步骤》这篇文章主要为大家详细介绍了kafka开启kerberos认证的完整步骤,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、kerberos安装部署二、准备机器三、Kerberos Server 安装1、配置krb5.con

Python使用DeepSeek进行联网搜索功能详解

《Python使用DeepSeek进行联网搜索功能详解》Python作为一种非常流行的编程语言,结合DeepSeek这一高性能的深度学习工具包,可以方便地处理各种深度学习任务,本文将介绍一下如何使用P... 目录一、环境准备与依赖安装二、DeepSeek简介三、联网搜索与数据集准备四、实践示例:图像分类1.

StarRocks数据库详解(什么是StarRocks)

《StarRocks数据库详解(什么是StarRocks)》StarRocks是一个高性能的全场景MPP数据库,支持多种数据导入导出方式,包括Spark、Flink、Hadoop等,它采用分布式架构,... 目录StarRocks介绍什么是StarRocks?StarRocks适合什么场景?StarRock

Python中__new__()方法适应及注意事项详解

《Python中__new__()方法适应及注意事项详解》:本文主要介绍Python中__new__()方法适应及注意事项的相关资料,new()方法是Python中的一个特殊构造方法,用于在创建对... 目录前言基本用法返回值单例模式自定义对象创建注意事项总结前言new() 方法在 python 中是一个

Mysql中InnoDB与MyISAM索引差异详解(最新整理)

《Mysql中InnoDB与MyISAM索引差异详解(最新整理)》InnoDB和MyISAM在索引实现和特性上有差异,包括聚集索引、非聚集索引、事务支持、并发控制、覆盖索引、主键约束、外键支持和物理存... 目录1. 索引类型与数据存储方式InnoDBMyISAM2. 事务与并发控制InnoDBMyISAM

StarRocks索引详解(最新整理)

《StarRocks索引详解(最新整理)》StarRocks支持多种索引类型,包括主键索引、前缀索引、Bitmap索引和Bloomfilter索引,这些索引类型适用于不同场景,如唯一性约束、减少索引空... 目录1. 主键索引(Primary Key Index)2. 前缀索引(Prefix Index /

一文详解Nginx的强缓存和协商缓存

《一文详解Nginx的强缓存和协商缓存》这篇文章主要为大家详细介绍了Nginx中强缓存和协商缓存的相关知识,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、强缓存(Strong Cache)1. 定义2. 响应头3. Nginx 配置示例4. 行为5. 适用场景二、协商缓存(协