【自然语言处理】BOW和TF-IDF详解

2023-12-05 16:40

本文主要是介绍【自然语言处理】BOW和TF-IDF详解,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

BOW 和 TF-IDF 详解

机器无法处理原始形式的文本数据。我们需要将文本分解成一种易于机器阅读的数字格式(自然语言处理背后的理念!)。BOW 和 TF-IDF 都是帮助我们将文本句子转换为向量的技术。

我将用一个流行的例子来解释本文中的 Bag-of-Words(BOW)和 TF-IDF。

我们都喜欢看电影。在我决定看一部电影之前,我总是先看它的影评。我知道你们很多人也这么做!所以,我在这里用这个例子。以下是关于某部恐怖电影的评论示例:

  • 评论一:This movie is very scary and long.
  • 评论二:This movie is not scary and is slow.
  • 评论三:This movie is spooky and good.

你可以看到关于这部电影的一些对比评论,以及电影的长度和节奏。想象一下看一千篇这样的评论是多么枯燥。显然,我们可以从中汲取很多有趣的东西,并以此为基础来衡量电影的表现。

然而,正如我们在上面看到的,我们不能简单地把这些句子交给机器学习模型,让它告诉我们一篇评论是正面的还是负面的。我们需要执行某些文本预处理步骤。

BOW 和 TF-IDF 就是两个这样做的例子。让我们详细了解一下。

1.BOW

词袋(BOW)模型是数字文本表示的最简单形式。像单词本身一样,我们可以将一个句子表示为一个词包(一个数字串)。

让我们回顾一下我们之前看到的三种类型的电影评论:

  • 评论一:This movie is very scary and long.
  • 评论二:This movie is not scary and is slow.
  • 评论三:This movie is spooky and good.

我们将首先从以上三篇评论中所有的独特词汇中构建一个词汇表。词汇表由这 11 11 11 个单词组成:“This”、“movie”、“is”、“very”、“stear”、“and”、“long”、“not”、“slow”、“spooky”、“good”。

现在,我们可以将这些单词中的每一个用 1 1 1 0 0 0 标记在上面的三个电影评论中。这将为我们提供三个用于三个评论的向量:

在这里插入图片描述

  • 评论向量1:[1 1 1 1 1 1 1 0 0 0 0]
  • 评论向量2:[1 1 2 0 0 1 1 0 1 0 0]
  • 评论向量3:[1 1 1 0 0 0 1 0 0 1 1]

这就是词袋(BOW)模型背后的核心思想。

在上面的例子中,我们可以得到长度为 11 11 11 的向量。然而,当我们遇到新的句子时,我们开始面临一些问题:

  • 如果新句子包含新词,那么我们的词汇量就会增加,因此向量的长度也会增加。
  • 此外,向量还包含许多 0 0 0,从而产生稀疏矩阵(这是我们希望避免的)。
  • 我们没有保留任何关于句子语法和文本中单词顺序的信息。

2.TF-IDF

TF-IDF 是一种用于信息检索与数据挖掘的常用加权技术。TF 是词频(Term Frequency),IDF 是逆文本频率指数(Inverse Document Frequency)。

评论 2 2 2: This movie is not scary and is slow.

T F ( ′ t h i s ′ ) = 评论 2 中出现 t h i s 的次数 评论 2 中的单词数 = 1 8 TF('this')=\frac{评论2中出现this的次数}{评论2中的单词数}=\frac{1}{8} TF(this)=评论2中的单词数评论2中出现this的次数=81

我们可以这样计算所有评论的词频:

在这里插入图片描述
我们可以计算评论 2 2 2 中所有单词的 IDF 值:

I D F ( ′ t h i s ′ ) = l o g 文档数 包含 t h i s 一词的文档数 = l o g 3 3 = l o g ( 1 ) = 0 IDF('this')=log\frac{文档数}{包含 this 一词的文档数}=log\frac{3}{3}=log(1)=0 IDF(this)=log包含this一词的文档数文档数=log33=log(1)=0

在这里插入图片描述
因此,我们看到 “is”、“this”、“and” 等词被降为0,代表重要性很小;而 “scary”、“long”、“good” 等词则更为重要,因而具有更高的权值。

我们现在可以计算语料库中每个单词的 TF-IDF 分数。分数越高的单词越重要,分数越低的单词越不重要: ( t f _ i d f ) t , d = t f t , d × i d f t (tf\_idf)_{t,d}=tf_{t,d}×idf_t (tf_idf)t,d=tft,d×idft T F − I D F ( ‘ t h i s ’ , R e v i e w 2 ) = T F ( ‘ t h i s ’ , R e v i e w 2 ) × I D F ( ‘ t h i s ’ ) = 1 8 × 0 = 0 TF-IDF(‘this’, Review 2) = TF(‘this’, Review 2)×IDF(‘this’) = \frac{1}{8}×0 = 0 TFIDF(this,Review2)=TF(this,Review2)×IDF(this)=81×0=0
在这里插入图片描述
我们现在已经获得了我们词汇的 TF-IDF 分数。TF-IDF 还为频率较低的单词提供较大的值,并且当 IDF 和 TF 值都较高时,该值较高。TF-IDF 分值高代表该单词在所有文档中都很少见,但在单个文档中很常见。

总结一下我们在文章中所讨论的内容:

  • 词袋只创建一组向量,其中包含文档中的单词出现次数,而 TF-IDF 模型还包含关于更重要的单词和不重要的单词的信息。
  • 词袋向量很容易解释。然而,在机器学习模型中,TF-IDF 通常表现得更好。

虽然 “BOW” 和 “TF-IDF” 在各自方面都很受欢迎,但在理解文字背景方面仍然存在空白。检测单词 “spooky” 和 “scary” 之间的相似性,或者将给定的文档翻译成另一种语言,需要更多关于文档的信息。

这就有关于 Word2Vec、CBOW、Skip-Gram 等词嵌入技术的由来。

这篇关于【自然语言处理】BOW和TF-IDF详解的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/458328

相关文章

Spring Security基于数据库验证流程详解

Spring Security 校验流程图 相关解释说明(认真看哦) AbstractAuthenticationProcessingFilter 抽象类 /*** 调用 #requiresAuthentication(HttpServletRequest, HttpServletResponse) 决定是否需要进行验证操作。* 如果需要验证,则会调用 #attemptAuthentica

无人叉车3d激光slam多房间建图定位异常处理方案-墙体画线地图切分方案

墙体画线地图切分方案 针对问题:墙体两侧特征混淆误匹配,导致建图和定位偏差,表现为过门跳变、外月台走歪等 ·解决思路:预期的根治方案IGICP需要较长时间完成上线,先使用切分地图的工程化方案,即墙体两侧切分为不同地图,在某一侧只使用该侧地图进行定位 方案思路 切分原理:切分地图基于关键帧位置,而非点云。 理论基础:光照是直线的,一帧点云必定只能照射到墙的一侧,无法同时照到两侧实践考虑:关

OpenHarmony鸿蒙开发( Beta5.0)无感配网详解

1、简介 无感配网是指在设备联网过程中无需输入热点相关账号信息,即可快速实现设备配网,是一种兼顾高效性、可靠性和安全性的配网方式。 2、配网原理 2.1 通信原理 手机和智能设备之间的信息传递,利用特有的NAN协议实现。利用手机和智能设备之间的WiFi 感知订阅、发布能力,实现了数字管家应用和设备之间的发现。在完成设备间的认证和响应后,即可发送相关配网数据。同时还支持与常规Sof

【生成模型系列(初级)】嵌入(Embedding)方程——自然语言处理的数学灵魂【通俗理解】

【通俗理解】嵌入(Embedding)方程——自然语言处理的数学灵魂 关键词提炼 #嵌入方程 #自然语言处理 #词向量 #机器学习 #神经网络 #向量空间模型 #Siri #Google翻译 #AlexNet 第一节:嵌入方程的类比与核心概念【尽可能通俗】 嵌入方程可以被看作是自然语言处理中的“翻译机”,它将文本中的单词或短语转换成计算机能够理解的数学形式,即向量。 正如翻译机将一种语言

6.1.数据结构-c/c++堆详解下篇(堆排序,TopK问题)

上篇:6.1.数据结构-c/c++模拟实现堆上篇(向下,上调整算法,建堆,增删数据)-CSDN博客 本章重点 1.使用堆来完成堆排序 2.使用堆解决TopK问题 目录 一.堆排序 1.1 思路 1.2 代码 1.3 简单测试 二.TopK问题 2.1 思路(求最小): 2.2 C语言代码(手写堆) 2.3 C++代码(使用优先级队列 priority_queue)

K8S(Kubernetes)开源的容器编排平台安装步骤详解

K8S(Kubernetes)是一个开源的容器编排平台,用于自动化部署、扩展和管理容器化应用程序。以下是K8S容器编排平台的安装步骤、使用方式及特点的概述: 安装步骤: 安装Docker:K8S需要基于Docker来运行容器化应用程序。首先要在所有节点上安装Docker引擎。 安装Kubernetes Master:在集群中选择一台主机作为Master节点,安装K8S的控制平面组件,如AP

嵌入式Openharmony系统构建与启动详解

大家好,今天主要给大家分享一下,如何构建Openharmony子系统以及系统的启动过程分解。 第一:OpenHarmony系统构建      首先熟悉一下,构建系统是一种自动化处理工具的集合,通过将源代码文件进行一系列处理,最终生成和用户可以使用的目标文件。这里的目标文件包括静态链接库文件、动态链接库文件、可执行文件、脚本文件、配置文件等。      我们在编写hellowor

LabVIEW FIFO详解

在LabVIEW的FPGA开发中,FIFO(先入先出队列)是常用的数据传输机制。通过配置FIFO的属性,工程师可以在FPGA和主机之间,或不同FPGA VIs之间进行高效的数据传输。根据具体需求,FIFO有多种类型与实现方式,包括目标范围内FIFO(Target-Scoped)、DMA FIFO以及点对点流(Peer-to-Peer)。 FIFO类型 **目标范围FIFO(Target-Sc

019、JOptionPane类的常用静态方法详解

目录 JOptionPane类的常用静态方法详解 1. showInputDialog()方法 1.1基本用法 1.2带有默认值的输入框 1.3带有选项的输入对话框 1.4自定义图标的输入对话框 2. showConfirmDialog()方法 2.1基本用法 2.2自定义按钮和图标 2.3带有自定义组件的确认对话框 3. showMessageDialog()方法 3.1

Thymeleaf:生成静态文件及异常处理java.lang.NoClassDefFoundError: ognl/PropertyAccessor

我们需要引入包: <dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-thymeleaf</artifactId></dependency><dependency><groupId>org.springframework</groupId><artifactId>sp