【自然语言处理】BOW和TF-IDF详解

2023-12-05 16:40

本文主要是介绍【自然语言处理】BOW和TF-IDF详解,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

BOW 和 TF-IDF 详解

机器无法处理原始形式的文本数据。我们需要将文本分解成一种易于机器阅读的数字格式(自然语言处理背后的理念!)。BOW 和 TF-IDF 都是帮助我们将文本句子转换为向量的技术。

我将用一个流行的例子来解释本文中的 Bag-of-Words(BOW)和 TF-IDF。

我们都喜欢看电影。在我决定看一部电影之前,我总是先看它的影评。我知道你们很多人也这么做!所以,我在这里用这个例子。以下是关于某部恐怖电影的评论示例:

  • 评论一:This movie is very scary and long.
  • 评论二:This movie is not scary and is slow.
  • 评论三:This movie is spooky and good.

你可以看到关于这部电影的一些对比评论,以及电影的长度和节奏。想象一下看一千篇这样的评论是多么枯燥。显然,我们可以从中汲取很多有趣的东西,并以此为基础来衡量电影的表现。

然而,正如我们在上面看到的,我们不能简单地把这些句子交给机器学习模型,让它告诉我们一篇评论是正面的还是负面的。我们需要执行某些文本预处理步骤。

BOW 和 TF-IDF 就是两个这样做的例子。让我们详细了解一下。

1.BOW

词袋(BOW)模型是数字文本表示的最简单形式。像单词本身一样,我们可以将一个句子表示为一个词包(一个数字串)。

让我们回顾一下我们之前看到的三种类型的电影评论:

  • 评论一:This movie is very scary and long.
  • 评论二:This movie is not scary and is slow.
  • 评论三:This movie is spooky and good.

我们将首先从以上三篇评论中所有的独特词汇中构建一个词汇表。词汇表由这 11 11 11 个单词组成:“This”、“movie”、“is”、“very”、“stear”、“and”、“long”、“not”、“slow”、“spooky”、“good”。

现在,我们可以将这些单词中的每一个用 1 1 1 0 0 0 标记在上面的三个电影评论中。这将为我们提供三个用于三个评论的向量:

在这里插入图片描述

  • 评论向量1:[1 1 1 1 1 1 1 0 0 0 0]
  • 评论向量2:[1 1 2 0 0 1 1 0 1 0 0]
  • 评论向量3:[1 1 1 0 0 0 1 0 0 1 1]

这就是词袋(BOW)模型背后的核心思想。

在上面的例子中,我们可以得到长度为 11 11 11 的向量。然而,当我们遇到新的句子时,我们开始面临一些问题:

  • 如果新句子包含新词,那么我们的词汇量就会增加,因此向量的长度也会增加。
  • 此外,向量还包含许多 0 0 0,从而产生稀疏矩阵(这是我们希望避免的)。
  • 我们没有保留任何关于句子语法和文本中单词顺序的信息。

2.TF-IDF

TF-IDF 是一种用于信息检索与数据挖掘的常用加权技术。TF 是词频(Term Frequency),IDF 是逆文本频率指数(Inverse Document Frequency)。

评论 2 2 2: This movie is not scary and is slow.

T F ( ′ t h i s ′ ) = 评论 2 中出现 t h i s 的次数 评论 2 中的单词数 = 1 8 TF('this')=\frac{评论2中出现this的次数}{评论2中的单词数}=\frac{1}{8} TF(this)=评论2中的单词数评论2中出现this的次数=81

我们可以这样计算所有评论的词频:

在这里插入图片描述
我们可以计算评论 2 2 2 中所有单词的 IDF 值:

I D F ( ′ t h i s ′ ) = l o g 文档数 包含 t h i s 一词的文档数 = l o g 3 3 = l o g ( 1 ) = 0 IDF('this')=log\frac{文档数}{包含 this 一词的文档数}=log\frac{3}{3}=log(1)=0 IDF(this)=log包含this一词的文档数文档数=log33=log(1)=0

在这里插入图片描述
因此,我们看到 “is”、“this”、“and” 等词被降为0,代表重要性很小;而 “scary”、“long”、“good” 等词则更为重要,因而具有更高的权值。

我们现在可以计算语料库中每个单词的 TF-IDF 分数。分数越高的单词越重要,分数越低的单词越不重要: ( t f _ i d f ) t , d = t f t , d × i d f t (tf\_idf)_{t,d}=tf_{t,d}×idf_t (tf_idf)t,d=tft,d×idft T F − I D F ( ‘ t h i s ’ , R e v i e w 2 ) = T F ( ‘ t h i s ’ , R e v i e w 2 ) × I D F ( ‘ t h i s ’ ) = 1 8 × 0 = 0 TF-IDF(‘this’, Review 2) = TF(‘this’, Review 2)×IDF(‘this’) = \frac{1}{8}×0 = 0 TFIDF(this,Review2)=TF(this,Review2)×IDF(this)=81×0=0
在这里插入图片描述
我们现在已经获得了我们词汇的 TF-IDF 分数。TF-IDF 还为频率较低的单词提供较大的值,并且当 IDF 和 TF 值都较高时,该值较高。TF-IDF 分值高代表该单词在所有文档中都很少见,但在单个文档中很常见。

总结一下我们在文章中所讨论的内容:

  • 词袋只创建一组向量,其中包含文档中的单词出现次数,而 TF-IDF 模型还包含关于更重要的单词和不重要的单词的信息。
  • 词袋向量很容易解释。然而,在机器学习模型中,TF-IDF 通常表现得更好。

虽然 “BOW” 和 “TF-IDF” 在各自方面都很受欢迎,但在理解文字背景方面仍然存在空白。检测单词 “spooky” 和 “scary” 之间的相似性,或者将给定的文档翻译成另一种语言,需要更多关于文档的信息。

这就有关于 Word2Vec、CBOW、Skip-Gram 等词嵌入技术的由来。

这篇关于【自然语言处理】BOW和TF-IDF详解的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/458328

相关文章

SpringBoot分段处理List集合多线程批量插入数据方式

《SpringBoot分段处理List集合多线程批量插入数据方式》文章介绍如何处理大数据量List批量插入数据库的优化方案:通过拆分List并分配独立线程处理,结合Spring线程池与异步方法提升效率... 目录项目场景解决方案1.实体类2.Mapper3.spring容器注入线程池bejsan对象4.创建

PHP轻松处理千万行数据的方法详解

《PHP轻松处理千万行数据的方法详解》说到处理大数据集,PHP通常不是第一个想到的语言,但如果你曾经需要处理数百万行数据而不让服务器崩溃或内存耗尽,你就会知道PHP用对了工具有多强大,下面小编就... 目录问题的本质php 中的数据流处理:为什么必不可少生成器:内存高效的迭代方式流量控制:避免系统过载一次性

MySQL的JDBC编程详解

《MySQL的JDBC编程详解》:本文主要介绍MySQL的JDBC编程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录前言一、前置知识1. 引入依赖2. 认识 url二、JDBC 操作流程1. JDBC 的写操作2. JDBC 的读操作总结前言本文介绍了mysq

Redis 的 SUBSCRIBE命令详解

《Redis的SUBSCRIBE命令详解》Redis的SUBSCRIBE命令用于订阅一个或多个频道,以便接收发送到这些频道的消息,本文给大家介绍Redis的SUBSCRIBE命令,感兴趣的朋友跟随... 目录基本语法工作原理示例消息格式相关命令python 示例Redis 的 SUBSCRIBE 命令用于订

使用Python批量将.ncm格式的音频文件转换为.mp3格式的实战详解

《使用Python批量将.ncm格式的音频文件转换为.mp3格式的实战详解》本文详细介绍了如何使用Python通过ncmdump工具批量将.ncm音频转换为.mp3的步骤,包括安装、配置ffmpeg环... 目录1. 前言2. 安装 ncmdump3. 实现 .ncm 转 .mp34. 执行过程5. 执行结

Python实现批量CSV转Excel的高性能处理方案

《Python实现批量CSV转Excel的高性能处理方案》在日常办公中,我们经常需要将CSV格式的数据转换为Excel文件,本文将介绍一个基于Python的高性能解决方案,感兴趣的小伙伴可以跟随小编一... 目录一、场景需求二、技术方案三、核心代码四、批量处理方案五、性能优化六、使用示例完整代码七、小结一、

Python中 try / except / else / finally 异常处理方法详解

《Python中try/except/else/finally异常处理方法详解》:本文主要介绍Python中try/except/else/finally异常处理方法的相关资料,涵... 目录1. 基本结构2. 各部分的作用tryexceptelsefinally3. 执行流程总结4. 常见用法(1)多个e

PHP应用中处理限流和API节流的最佳实践

《PHP应用中处理限流和API节流的最佳实践》限流和API节流对于确保Web应用程序的可靠性、安全性和可扩展性至关重要,本文将详细介绍PHP应用中处理限流和API节流的最佳实践,下面就来和小编一起学习... 目录限流的重要性在 php 中实施限流的最佳实践使用集中式存储进行状态管理(如 Redis)采用滑动

SpringBoot日志级别与日志分组详解

《SpringBoot日志级别与日志分组详解》文章介绍了日志级别(ALL至OFF)及其作用,说明SpringBoot默认日志级别为INFO,可通过application.properties调整全局或... 目录日志级别1、级别内容2、调整日志级别调整默认日志级别调整指定类的日志级别项目开发过程中,利用日志

Java中的抽象类与abstract 关键字使用详解

《Java中的抽象类与abstract关键字使用详解》:本文主要介绍Java中的抽象类与abstract关键字使用详解,本文通过实例代码给大家介绍的非常详细,感兴趣的朋友跟随小编一起看看吧... 目录一、抽象类的概念二、使用 abstract2.1 修饰类 => 抽象类2.2 修饰方法 => 抽象方法,没有