泊松图像编辑/融合(Possion image editing)的原理与数值解算法

本文主要是介绍泊松图像编辑/融合(Possion image editing)的原理与数值解算法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

泊松图像融合是目前融合算法的标杆,泊松图像编辑不仅可以用于图像融合,还可以用于风格迁移、插入透明物体、局部亮度/颜色调制等。网上有不少介绍泊松图像融合算法的文章,但基本表都刻意淡化了其理论推导,着重去讲其实现,让人读完还是只知其然而不知其所以然,甚至连知其然都做不到。这里我将尝试从原理到实现系统地讲一讲泊松图像编辑/融合技术。(注:本文源于对http://www.ipol.im/pub/art/2016/163/上“Possion image editing”论文与源码的解读,读者可以自行从上面下载论文和代码)

泊松图像编辑的原理说来也不复杂,其实就是在满足一定边界的条件下让待求解二维函数f在区域\Omega中的梯度场与参考梯度场\boldsymbol{\mathbf{v}}尽可能相似,这种相似度最大化用差值的二阶范数最小化来表征,而这个边界条件就是函数值在边界上与目标图像f^{*}的的取值相等,这就是所谓的狄利克雷边界条件。用数学方式表示就是:

 其解满足欧拉——拉格朗日方程:

该方程就是所谓的泊松方程。关于散度的理解可以参考https://blog.csdn.net/weixin_41923961/article/details/85225757。对于\Omega与图像外边缘\partial R相交的特殊情况<注:对此特殊况不感兴趣的可以直接跳过>,狄利克雷边界条件被\Omega \cup \partial R上的纽曼边界条件(即边界处导数为0)替代,也就是相当于对图像进行了边缘复制性外扩。

前述泊松方程的矩阵表示为:

 其中,D_xD_y的形式与我先前的博客https://blog.csdn.net/u014230360/article/details/107639764里的相似,但\Omega以外区域的对应行都是零值行!fv_xv_y分别是待求解图像、参考梯度场x分量、参考梯度场y分量的向量化表示。以一个4*4的图像示意,拉普拉斯矩阵L的形式如下图所示(第一行两个1的外框颜色反了,图是从论文中截取的)。

也就是说,L在\Omega与图像外边缘\partial R不相交的时候,L中对应于\Omega的每一行的非零元素都是1、1、-4、1、1(注意,是对应于\Omega的行才是非零行!)。当出现\Omega与图像外边缘\partial R相交的特殊情况时,由于交集上的点的像素值由\Omega上的点的像素值复制而来,此时中对应坐标的Z值被Z_{x,y}替代,也就出现了上图中的情况。

\Omega的投影矩阵如下式所示(N=H*W,等于<边界外扩后的>图像的总像素数):

 即只有对应\Omega中某点的行在主对角线上有一个值1,其他行均为零值行。

 同样,记\Omega的外边界\partial \Omega的投影矩阵为:

记对\Omega中点进行采样的采样矩阵为:

 对P_\OmegaP_{\partial \Omega}S_{\Omega}的解释见下图(注意图中边界的外扩!):

于是有f=(P_{\Omega}+P_{\partial \Omega})f,继而有:

最后一步中还是一个关于N个未知数的N维方程组,但实际上真正与问题相关的的未知数只有n个(n对应\Omega中的像素点数)。用采样矩阵S_{\Omega}作用于其上,得:

其中,x是对应于 \Omega中像素点的nx1的列向量。

以上便是用于求解目标图像\Omega中像素值的形如Ax=b的方程。解出x=A\setminus b,用\Omega对应的值取代目标图像中的相应值即完成泊松编辑。

当区域\Omega是一个矩形区域时,关于泊松方程的求解还有一个更高效的基于傅里叶变换的实现,以后有时间我再讲一讲。感兴趣的同学暂时可以参照http://www.ipol.im/pub/art/2016/163/的论文和代码自行研究。

效果图就不放了,网上一搜一大堆,论文中也多的是。

这篇关于泊松图像编辑/融合(Possion image editing)的原理与数值解算法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/457793

相关文章

ShardingProxy读写分离之原理、配置与实践过程

《ShardingProxy读写分离之原理、配置与实践过程》ShardingProxy是ApacheShardingSphere的数据库中间件,通过三层架构实现读写分离,解决高并发场景下数据库性能瓶... 目录一、ShardingProxy技术定位与读写分离核心价值1.1 技术定位1.2 读写分离核心价值二

深度解析Python中递归下降解析器的原理与实现

《深度解析Python中递归下降解析器的原理与实现》在编译器设计、配置文件处理和数据转换领域,递归下降解析器是最常用且最直观的解析技术,本文将详细介绍递归下降解析器的原理与实现,感兴趣的小伙伴可以跟随... 目录引言:解析器的核心价值一、递归下降解析器基础1.1 核心概念解析1.2 基本架构二、简单算术表达

深入浅出Spring中的@Autowired自动注入的工作原理及实践应用

《深入浅出Spring中的@Autowired自动注入的工作原理及实践应用》在Spring框架的学习旅程中,@Autowired无疑是一个高频出现却又让初学者头疼的注解,它看似简单,却蕴含着Sprin... 目录深入浅出Spring中的@Autowired:自动注入的奥秘什么是依赖注入?@Autowired

从基础到高级详解Python数值格式化输出的完全指南

《从基础到高级详解Python数值格式化输出的完全指南》在数据分析、金融计算和科学报告领域,数值格式化是提升可读性和专业性的关键技术,本文将深入解析Python中数值格式化输出的相关方法,感兴趣的小伙... 目录引言:数值格式化的核心价值一、基础格式化方法1.1 三种核心格式化方式对比1.2 基础格式化示例

从原理到实战解析Java Stream 的并行流性能优化

《从原理到实战解析JavaStream的并行流性能优化》本文给大家介绍JavaStream的并行流性能优化:从原理到实战的全攻略,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的... 目录一、并行流的核心原理与适用场景二、性能优化的核心策略1. 合理设置并行度:打破默认阈值2. 避免装箱

Python中的filter() 函数的工作原理及应用技巧

《Python中的filter()函数的工作原理及应用技巧》Python的filter()函数用于筛选序列元素,返回迭代器,适合函数式编程,相比列表推导式,内存更优,尤其适用于大数据集,结合lamb... 目录前言一、基本概念基本语法二、使用方式1. 使用 lambda 函数2. 使用普通函数3. 使用 N

MyBatis-Plus 与 Spring Boot 集成原理实战示例

《MyBatis-Plus与SpringBoot集成原理实战示例》MyBatis-Plus通过自动配置与核心组件集成SpringBoot实现零配置,提供分页、逻辑删除等插件化功能,增强MyBa... 目录 一、MyBATis-Plus 简介 二、集成方式(Spring Boot)1. 引入依赖 三、核心机制

redis和redission分布式锁原理及区别说明

《redis和redission分布式锁原理及区别说明》文章对比了synchronized、乐观锁、Redis分布式锁及Redission锁的原理与区别,指出在集群环境下synchronized失效,... 目录Redis和redission分布式锁原理及区别1、有的同伴想到了synchronized关键字

Linux中的HTTPS协议原理分析

《Linux中的HTTPS协议原理分析》文章解释了HTTPS的必要性:HTTP明文传输易被篡改和劫持,HTTPS通过非对称加密协商对称密钥、CA证书认证和混合加密机制,有效防范中间人攻击,保障通信安全... 目录一、什么是加密和解密?二、为什么需要加密?三、常见的加密方式3.1 对称加密3.2非对称加密四、

setsid 命令工作原理和使用案例介绍

《setsid命令工作原理和使用案例介绍》setsid命令在Linux中创建独立会话,使进程脱离终端运行,适用于守护进程和后台任务,通过重定向输出和确保权限,可有效管理长时间运行的进程,本文给大家介... 目录setsid 命令介绍和使用案例基本介绍基本语法主要特点命令参数使用案例1. 在后台运行命令2.