泊松图像编辑/融合(Possion image editing)的原理与数值解算法

本文主要是介绍泊松图像编辑/融合(Possion image editing)的原理与数值解算法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

泊松图像融合是目前融合算法的标杆,泊松图像编辑不仅可以用于图像融合,还可以用于风格迁移、插入透明物体、局部亮度/颜色调制等。网上有不少介绍泊松图像融合算法的文章,但基本表都刻意淡化了其理论推导,着重去讲其实现,让人读完还是只知其然而不知其所以然,甚至连知其然都做不到。这里我将尝试从原理到实现系统地讲一讲泊松图像编辑/融合技术。(注:本文源于对http://www.ipol.im/pub/art/2016/163/上“Possion image editing”论文与源码的解读,读者可以自行从上面下载论文和代码)

泊松图像编辑的原理说来也不复杂,其实就是在满足一定边界的条件下让待求解二维函数f在区域\Omega中的梯度场与参考梯度场\boldsymbol{\mathbf{v}}尽可能相似,这种相似度最大化用差值的二阶范数最小化来表征,而这个边界条件就是函数值在边界上与目标图像f^{*}的的取值相等,这就是所谓的狄利克雷边界条件。用数学方式表示就是:

 其解满足欧拉——拉格朗日方程:

该方程就是所谓的泊松方程。关于散度的理解可以参考https://blog.csdn.net/weixin_41923961/article/details/85225757。对于\Omega与图像外边缘\partial R相交的特殊情况<注:对此特殊况不感兴趣的可以直接跳过>,狄利克雷边界条件被\Omega \cup \partial R上的纽曼边界条件(即边界处导数为0)替代,也就是相当于对图像进行了边缘复制性外扩。

前述泊松方程的矩阵表示为:

 其中,D_xD_y的形式与我先前的博客https://blog.csdn.net/u014230360/article/details/107639764里的相似,但\Omega以外区域的对应行都是零值行!fv_xv_y分别是待求解图像、参考梯度场x分量、参考梯度场y分量的向量化表示。以一个4*4的图像示意,拉普拉斯矩阵L的形式如下图所示(第一行两个1的外框颜色反了,图是从论文中截取的)。

也就是说,L在\Omega与图像外边缘\partial R不相交的时候,L中对应于\Omega的每一行的非零元素都是1、1、-4、1、1(注意,是对应于\Omega的行才是非零行!)。当出现\Omega与图像外边缘\partial R相交的特殊情况时,由于交集上的点的像素值由\Omega上的点的像素值复制而来,此时中对应坐标的Z值被Z_{x,y}替代,也就出现了上图中的情况。

\Omega的投影矩阵如下式所示(N=H*W,等于<边界外扩后的>图像的总像素数):

 即只有对应\Omega中某点的行在主对角线上有一个值1,其他行均为零值行。

 同样,记\Omega的外边界\partial \Omega的投影矩阵为:

记对\Omega中点进行采样的采样矩阵为:

 对P_\OmegaP_{\partial \Omega}S_{\Omega}的解释见下图(注意图中边界的外扩!):

于是有f=(P_{\Omega}+P_{\partial \Omega})f,继而有:

最后一步中还是一个关于N个未知数的N维方程组,但实际上真正与问题相关的的未知数只有n个(n对应\Omega中的像素点数)。用采样矩阵S_{\Omega}作用于其上,得:

其中,x是对应于 \Omega中像素点的nx1的列向量。

以上便是用于求解目标图像\Omega中像素值的形如Ax=b的方程。解出x=A\setminus b,用\Omega对应的值取代目标图像中的相应值即完成泊松编辑。

当区域\Omega是一个矩形区域时,关于泊松方程的求解还有一个更高效的基于傅里叶变换的实现,以后有时间我再讲一讲。感兴趣的同学暂时可以参照http://www.ipol.im/pub/art/2016/163/的论文和代码自行研究。

效果图就不放了,网上一搜一大堆,论文中也多的是。

这篇关于泊松图像编辑/融合(Possion image editing)的原理与数值解算法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/457793

相关文章

Spring Boot循环依赖原理、解决方案与最佳实践(全解析)

《SpringBoot循环依赖原理、解决方案与最佳实践(全解析)》循环依赖指两个或多个Bean相互直接或间接引用,形成闭环依赖关系,:本文主要介绍SpringBoot循环依赖原理、解决方案与最... 目录一、循环依赖的本质与危害1.1 什么是循环依赖?1.2 核心危害二、Spring的三级缓存机制2.1 三

C#中async await异步关键字用法和异步的底层原理全解析

《C#中asyncawait异步关键字用法和异步的底层原理全解析》:本文主要介绍C#中asyncawait异步关键字用法和异步的底层原理全解析,本文给大家介绍的非常详细,对大家的学习或工作具有一... 目录C#异步编程一、异步编程基础二、异步方法的工作原理三、代码示例四、编译后的底层实现五、总结C#异步编程

openCV中KNN算法的实现

《openCV中KNN算法的实现》KNN算法是一种简单且常用的分类算法,本文主要介绍了openCV中KNN算法的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的... 目录KNN算法流程使用OpenCV实现KNNOpenCV 是一个开源的跨平台计算机视觉库,它提供了各

Go 语言中的select语句详解及工作原理

《Go语言中的select语句详解及工作原理》在Go语言中,select语句是用于处理多个通道(channel)操作的一种控制结构,它类似于switch语句,本文给大家介绍Go语言中的select语... 目录Go 语言中的 select 是做什么的基本功能语法工作原理示例示例 1:监听多个通道示例 2:带

鸿蒙中@State的原理使用详解(HarmonyOS 5)

《鸿蒙中@State的原理使用详解(HarmonyOS5)》@State是HarmonyOSArkTS框架中用于管理组件状态的核心装饰器,其核心作用是实现数据驱动UI的响应式编程模式,本文给大家介绍... 目录一、@State在鸿蒙中是做什么的?二、@Spythontate的基本原理1. 依赖关系的收集2.

springboot+dubbo实现时间轮算法

《springboot+dubbo实现时间轮算法》时间轮是一种高效利用线程资源进行批量化调度的算法,本文主要介绍了springboot+dubbo实现时间轮算法,文中通过示例代码介绍的非常详细,对大家... 目录前言一、参数说明二、具体实现1、HashedwheelTimer2、createWheel3、n

Java编译生成多个.class文件的原理和作用

《Java编译生成多个.class文件的原理和作用》作为一名经验丰富的开发者,在Java项目中执行编译后,可能会发现一个.java源文件有时会产生多个.class文件,从技术实现层面详细剖析这一现象... 目录一、内部类机制与.class文件生成成员内部类(常规内部类)局部内部类(方法内部类)匿名内部类二、

Python中随机休眠技术原理与应用详解

《Python中随机休眠技术原理与应用详解》在编程中,让程序暂停执行特定时间是常见需求,当需要引入不确定性时,随机休眠就成为关键技巧,下面我们就来看看Python中随机休眠技术的具体实现与应用吧... 目录引言一、实现原理与基础方法1.1 核心函数解析1.2 基础实现模板1.3 整数版实现二、典型应用场景2

Java的IO模型、Netty原理解析

《Java的IO模型、Netty原理解析》Java的I/O是以流的方式进行数据输入输出的,Java的类库涉及很多领域的IO内容:标准的输入输出,文件的操作、网络上的数据传输流、字符串流、对象流等,这篇... 目录1.什么是IO2.同步与异步、阻塞与非阻塞3.三种IO模型BIO(blocking I/O)NI

SpringBoot实现MD5加盐算法的示例代码

《SpringBoot实现MD5加盐算法的示例代码》加盐算法是一种用于增强密码安全性的技术,本文主要介绍了SpringBoot实现MD5加盐算法的示例代码,文中通过示例代码介绍的非常详细,对大家的学习... 目录一、什么是加盐算法二、如何实现加盐算法2.1 加盐算法代码实现2.2 注册页面中进行密码加盐2.