《动手学深度学习》task1_2 Softmax与分类模型

2023-12-05 10:18

本文主要是介绍《动手学深度学习》task1_2 Softmax与分类模型,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

  • softmax和分类模型
    • softmax的基本概念
    • 交叉熵损失函数
    • 模型训练和预测
  • 获取Fashion-MNIST训练集和读取数据
    • get dataset
  • softmax从零开始的实现
    • 获取训练集数据和测试集数据
    • 模型参数初始化
    • 对多维Tensor按维度操作
    • 定义softmax操作
    • softmax回归模型
    • 定义损失函数
    • 定义准确率
    • 训练模型
    • 模型预测
  • softmax的简洁实现
    • 初始化参数和获取数据
    • 定义网络模型
    • 初始化模型参数
    • 定义损失函数
    • 定义优化函数
    • 训练

softmax和分类模型

内容包含:

  1. softmax回归的基本概念
  2. 如何获取Fashion-MNIST数据集和读取数据
  3. softmax回归模型的从零开始实现,实现一个对Fashion-MNIST训练集中的图像数据进行分类的模型
  4. 使用pytorch重新实现softmax回归模型

softmax的基本概念

  • 分类问题
    一个简单的图像分类问题,输入图像的高和宽均为2像素,色彩为灰度。
    图像中的4像素分别记为 x 1 , x 2 , x 3 , x 4 x_1, x_2, x_3, x_4 x1,x2,x3,x4
    假设真实标签为狗、猫或者鸡,这些标签对应的离散值为 y 1 , y 2 , y 3 y_1, y_2, y_3 y1,y2,y3
    我们通常使用离散的数值来表示类别,例如 y 1 = 1 , y 2 = 2 , y 3 = 3 y_1=1, y_2=2, y_3=3 y1=1,y2=2,y3=3
  • 权重矢量

o 1 = x 1 w 11 + x 2 w 21 + x 3 w 31 + x 4 w 41 + b 1 \begin{aligned} o_1 &= x_1 w_{11} + x_2 w_{21} + x_3 w_{31} + x_4 w_{41} + b_1 \end{aligned} o1=x1w11+x2w21+x3w31+x4w41+b1

o 2 = x 1 w 12 + x 2 w 22 + x 3 w 32 + x 4 w 42 + b 2 \begin{aligned} o_2 &= x_1 w_{12} + x_2 w_{22} + x_3 w_{32} + x_4 w_{42} + b_2 \end{aligned} o2=x1w12+x2w22+x3w32+x4w42+b2

o 3 = x 1 w 13 + x 2 w 23 + x 3 w 33 + x 4 w 43 + b 3 \begin{aligned} o_3 &= x_1 w_{13} + x_2 w_{23} + x_3 w_{33} + x_4 w_{43} + b_3 \end{aligned} o3=x1w13+x2w23+x3w33+x4w43+b3

  • 神经网络图
    下图用神经网络图描绘了上面的计算。softmax回归同线性回归一样,也是一个单层神经网络。由于每个输出 o 1 , o 2 , o 3 o_1, o_2, o_3 o1,o2,o3的计算都要依赖于所有的输入 x 1 , x 2 , x 3 , x 4 x_1, x_2, x_3, x_4 x1,x2,x3,x4,softmax回归的输出层也是一个全连接层。

Image Name
s o f t m a x 回 归 是 一 个 单 层 神 经 网 络 \begin{aligned}softmax回归是一个单层神经网络\end{aligned} softmax
既然分类问题需要得到离散的预测输出,一个简单的办法是将输出值 o i o_i oi当作预测类别是 i i i的置信度,并将值最大的输出所对应的类作为预测输出,即输出 arg ⁡ max ⁡ i o i \underset{i}{\arg\max} o_i iargmaxoi。例如,如果 o 1 , o 2 , o 3 o_1,o_2,o_3 o1,o2,o3分别为 0.1 , 10 , 0.1 0.1,10,0.1 0.1,10,0.1,由于 o 2 o_2 o2最大,那么预测类别为2,其代表猫。

  • 输出问题
    直接使用输出层的输出有两个问题:
    1. 一方面,由于输出层的输出值的范围不确定,我们难以直观上判断这些值的意义。例如,刚才举的例子中的输出值10表示“很置信”图像类别为猫,因为该输出值是其他两类的输出值的100倍。但如果 o 1 = o 3 = 1 0 3 o_1=o_3=10^3 o1=o3=103,那么输出值10却又表示图像类别为猫的概率很低。
    2. 另一方面,由于真实标签是离散值,这些离散值与不确定范围的输出值之间的误差难以衡量。

softmax运算符(softmax operator)解决了以上两个问题。它通过下式将输出值变换成值为正且和为1的概率分布:
y ^ 1 , y ^ 2 , y ^ 3 = softmax ( o 1 , o 2 , o 3 ) \hat{y}_1, \hat{y}_2, \hat{y}_3 = \text{softmax}(o_1, o_2, o_3) y^1,y^2,y^3=softmax(o1,o2,o3)
其中
y ^ 1 = exp ⁡ ( o 1 ) ∑ i = 1 3 exp ⁡ ( o i ) , y ^ 2 = exp ⁡ ( o 2 ) ∑ i = 1 3 exp ⁡ ( o i ) , y ^ 3 = exp ⁡ ( o 3 ) ∑ i = 1 3 exp ⁡ ( o i ) . \hat{y}1 = \frac{ \exp(o_1)}{\sum_{i=1}^3 \exp(o_i)},\quad \hat{y}2 = \frac{ \exp(o_2)}{\sum_{i=1}^3 \exp(o_i)},\quad \hat{y}3 = \frac{ \exp(o_3)}{\sum_{i=1}^3 \exp(o_i)}. y^1=i=13exp(oi)exp(o1),y^2=i=13exp(oi)exp(o2),y^3=i=13exp(oi)exp(o3).
容易看出 y ^ 1 + y ^ 2 + y ^ 3 = 1 \hat{y}_1 + \hat{y}_2 + \hat{y}_3 = 1 y^1+y^2+y^3=1 0 ≤ y ^ 1 , y ^ 2 , y ^ 3 ≤ 1 0 \leq \hat{y}_1, \hat{y}_2, \hat{y}_3 \leq 1 0y^1,y^2,y^31,因此 y ^ 1 , y ^ 2 , y ^ 3 \hat{y}_1, \hat{y}_2, \hat{y}_3 y^1,y^2,y^3是一个合法的概率分布。这时候,如果 y ^ 2 = 0.8 \hat{y}_2=0.8 y^2=0.8,不管 y ^ 1 \hat{y}_1 y^1 y ^ 3 \hat{y}_3 y^3的值是多少,我们都知道图像类别为猫的概率是80%。此外,我们注意到
arg ⁡ max ⁡ i o i = arg ⁡ max ⁡ i y ^ i \underset{i}{\arg\max} o_i = \underset{i}{\arg\max} \hat{y}_i iargmaxoi=iargmaxy^i
因此softmax运算不改变预测类别输出。

  • 计算效率
    • 单样本矢量计算表达式
      为了提高计算效率,我们可以将单样本分类通过矢量计算来表达。在上面的图像分类问题中,假设softmax回归的权重和偏差参数分别为

W = [ w 11 w 12 w 13 w 21 w 22 w 23 w 31 w 32 w 33 w 41 w 42 w 43 ] , b = [ b 1 b 2 b 3 ] , \boldsymbol{W} = \begin{bmatrix} w_{11} & w_{12} & w_{13} \\ w_{21} & w_{22} & w_{23} \\ w_{31} & w_{32} & w_{33} \\ w_{41} & w_{42} & w_{43} \end{bmatrix},\quad \boldsymbol{b} = \begin{bmatrix} b_1 & b_2 & b_3 \end{bmatrix}, W=w11w21w31w41w12w22w32w42w13w23w33w43,b=[b1b2b3],

设高和宽分别为2个像素的图像样本 i i i的特征为
x ( i ) = [ x 1 ( i ) x 2 ( i ) x 3 ( i ) x 4 ( i ) ] , \boldsymbol{x}^{(i)} = \begin{bmatrix}x_1^{(i)} & x_2^{(i)} & x_3^{(i)} & x_4^{(i)}\end{bmatrix}, x(i)=[x1(i)x2(i)x3(i)x4(i)],
输出层的输出为
o ( i ) = [ o 1 ( i ) o 2 ( i ) o 3 ( i ) ] , \boldsymbol{o}^{(i)} = \begin{bmatrix}o_1^{(i)} & o_2^{(i)} & o_3^{(i)}\end{bmatrix}, o(i)=[o1(i)o2(i)o3(i)],
预测为狗、猫或鸡的概率分布为

y ^ ( i ) = [ y ^ 1 ( i ) y ^ 2 ( i ) y ^ 3 ( i ) ] . \boldsymbol{\hat{y}}^{(i)} = \begin{bmatrix}\hat{y}_1^{(i)} & \hat{y}_2^{(i)} & \hat{y}_3^{(i)}\end{bmatrix}. y^(i)=[y^1(i)y^2(i)y^3(i)].
softmax回归对样本 i i i分类的矢量计算表达式为
o ( i ) = x ( i ) W + b , y ^ ( i ) = softmax ( o ( i ) ) . \begin{aligned} \boldsymbol{o}^{(i)} &= \boldsymbol{x}^{(i)} \boldsymbol{W} + \boldsymbol{b},\\ \boldsymbol{\hat{y}}^{(i)} &= \text{softmax}(\boldsymbol{o}^{(i)}). \end{aligned} o(i)y^(i)=x(i)W+b,=softmax(o(i)).

  • 小批量矢量计算表达式
    为了进一步提升计算效率,我们通常对小批量数据做矢量计算。广义上讲,给定一个小批量样本,其批量大小为 n n n,输入个数(特征数)为 d d d,输出个数(类别数)为 q q q。设批量特征为 X ∈ R n × d \boldsymbol{X} \in \mathbb{R}^{n \times d} XRn×d。假设softmax回归的权重和偏差参数分别为 W ∈ R d × q \boldsymbol{W} \in \mathbb{R}^{d \times q} WRd×q b ∈ R 1 × q \boldsymbol{b} \in \mathbb{R}^{1 \times q} bR1×q。softmax回归的矢量计算表达式为

O = X W + b , Y ^ = softmax ( O ) , \begin{aligned} \boldsymbol{O} &= \boldsymbol{X} \boldsymbol{W} + \boldsymbol{b},\\ \boldsymbol{\hat{Y}} &= \text{softmax}(\boldsymbol{O}), \end{aligned} OY^=XW+b,=softmax(O),

其中的加法运算使用了广播机制, O , Y ^ ∈ R n × q \boldsymbol{O}, \boldsymbol{\hat{Y}} \in \mathbb{R}^{n \times q} O,Y^Rn×q且这两个矩阵的第 i i i行分别为样本 i i i的输出 o ( i ) \boldsymbol{o}^{(i)} o(i)和概率分布 y ^ ( i ) \boldsymbol{\hat{y}}^{(i)} y^(i)

交叉熵损失函数

对于样本 i i i,我们构造向量 y ( i ) ∈ R q \boldsymbol{y}^{(i)}\in \mathbb{R}^{q} y(i)Rq ,使其第 y ( i ) y^{(i)} y(i)(样本 i i i类别的离散数值)个元素为1,其余为0。这样我们的训练目标可以设为使预测概率分布 y ^ ( i ) \boldsymbol{\hat y}^{(i)} y^(i)尽可能接近真实的标签概率分布 y ( i ) \boldsymbol{y}^{(i)} y(i)

  • 平方损失估计

L o s s = ∣ y ^ ( i ) − y ( i ) ∣ 2 / 2 \begin{aligned}Loss = |\boldsymbol{\hat y}^{(i)}-\boldsymbol{y}^{(i)}|^2/2\end{aligned} Loss=y^(i)y(i)2/2

然而,想要预测分类结果正确,我们其实并不需要预测概率完全等于标签概率。例如,在图像分类的例子里,如果 y ( i ) = 3 y^{(i)}=3 y(i)=3,那么我们只需要 y ^ 3 ( i ) \hat{y}^{(i)}_3 y^3(i)比其他两个预测值 y ^ 1 ( i ) \hat{y}^{(i)}_1 y^1(i) y ^ 2 ( i ) \hat{y}^{(i)}_2 y^2(i)大就行了。即使 y ^ 3 ( i ) \hat{y}^{(i)}_3 y^3(i)值为0.6,不管其他两个预测值为多少,类别预测均正确。而平方损失则过于严格,例如 y ^ 1 ( i ) = y ^ 2 ( i ) = 0.2 \hat y^{(i)}_1=\hat y^{(i)}_2=0.2 y^1(i)=y^2(i)=0.2 y ^ 1 ( i ) = 0 , y ^ 2 ( i ) = 0.4 \hat y^{(i)}_1=0, \hat y^{(i)}_2=0.4 y^1(i)=0,y^2(i)=0.4的损失要小很多,虽然两者都有同样正确的分类预测结果。

改善上述问题的一个方法是使用更适合衡量两个概率分布差异的测量函数。其中,交叉熵(cross entropy)是一个常用的衡量方法:
H ( y ( i ) , y ^ ( i ) ) = − ∑ j = 1 q y j ( i ) log ⁡ y ^ j ( i ) , H\left(\boldsymbol y^{(i)}, \boldsymbol {\hat y}^{(i)}\right ) = -\sum_{j=1}^q y_j^{(i)} \log \hat y_j^{(i)}, H(y(i),y^(i))=j=1qyj(i)logy^j(i),
其中带下标的 y j ( i ) y_j^{(i)} yj(i)是向量 y ( i ) \boldsymbol y^{(i)} y(i)中非0即1的元素,需要注意将它与样本 i i i类别的离散数值,即不带下标的 y ( i ) y^{(i)} y(i)区分。在上式中,我们知道向量 y ( i ) \boldsymbol y^{(i)} y(i)中只有第 y ( i ) y^{(i)} y(i)个元素 y ( i ) y ( i ) y^{(i)}{y^{(i)}} y(i)y(i)为1,其余全为0,于是 H ( y ( i ) , y ^ ( i ) ) = − log ⁡ y ^ y ( i ) ( i ) H(\boldsymbol y^{(i)}, \boldsymbol {\hat y}^{(i)}) = -\log \hat y{y^{(i)}}^{(i)} H(y(i),y^(i))=logy^y(i)(i)。也就是说,交叉熵只关心对正确类别的预测概率,因为只要其值足够大,就可以确保分类结果正确。当然,遇到一个样本有多个标签时,例如图像里含有不止一个物体时,我们并不能做这一步简化。但即便对于这种情况,交叉熵同样只关心对图像中出现的物体类别的预测概率。

假设训练数据集的样本数为 n n n,交叉熵损失函数定义为
ℓ ( Θ ) = 1 n ∑ i = 1 n H ( y ( i ) , y ^ ( i ) ) , \ell(\boldsymbol{\Theta}) = \frac{1}{n} \sum_{i=1}^n H\left(\boldsymbol y^{(i)}, \boldsymbol {\hat y}^{(i)}\right ), (Θ)=n1i=1nH(y(i),y^(i)),
其中 Θ \boldsymbol{\Theta} Θ代表模型参数。同样地,如果每个样本只有一个标签,那么交叉熵损失可以简写成 ℓ ( Θ ) = − ( 1 / n ) ∑ i = 1 n log ⁡ y ^ y ( i ) ( i ) \ell(\boldsymbol{\Theta}) = -(1/n) \sum_{i=1}^n \log \hat y_{y^{(i)}}^{(i)} (Θ)=(1/n)i=1nlogy^y(i)(i)。从另一个角度来看,我们知道最小化 ℓ ( Θ ) \ell(\boldsymbol{\Theta}) (Θ)等价于最大化 exp ⁡ ( − n ℓ ( Θ ) ) = ∏ i = 1 n y ^ y ( i ) ( i ) \exp(-n\ell(\boldsymbol{\Theta}))=\prod_{i=1}^n \hat y_{y^{(i)}}^{(i)} exp(n(Θ))=i=1ny^y(i)(i),即最小化交叉熵损失函数等价于最大化训练数据集所有标签类别的联合预测概率。

模型训练和预测

在训练好softmax回归模型后,给定任一样本特征,就可以预测每个输出类别的概率。通常,我们把预测概率最大的类别作为输出类别。如果它与真实类别(标签)一致,说明这次预测是正确的。在3.6节的实验中,我们将使用准确率(accuracy)来评价模型的表现。它等于正确预测数量与总预测数量之比。

获取Fashion-MNIST训练集和读取数据

在介绍softmax回归的实现前我们先引入一个多类图像分类数据集。它将在后面的章节中被多次使用,以方便我们观察比较算法之间在模型精度和计算效率上的区别。图像分类数据集中最常用的是手写数字识别数据集MNIST[1]。但大部分模型在MNIST上的分类精度都超过了95%。为了更直观地观察算法之间的差异,我们将使用一个图像内容更加复杂的数据集Fashion-MNIST[2]。

我这里我们会使用torchvision包,它是服务于PyTorch深度学习框架的,主要用来构建计算机视觉模型。torchvision主要由以下几部分构成:

  1. torchvision.datasets: 一些加载数据的函数及常用的数据集接口;
  2. torchvision.models: 包含常用的模型结构(含预训练模型),例如AlexNet、VGG、ResNet等;
  3. torchvision.transforms: 常用的图片变换,例如裁剪、旋转等;
  4. torchvision.utils: 其他的一些有用的方法。
# import needed package
%matplotlib inline
from IPython import display
import matplotlib.pyplot as pltimport torch
import torchvision
import torchvision.transforms as transforms
import timeimport sys
sys.path.append("/home/kesci/input")
import d2lzh1981 as d2lprint(torch.__version__)
print(torchvision.__version__)
---------------------------------------------------------------------------ModuleNotFoundError                       Traceback (most recent call last)<ipython-input-1-e3b06ab588d2> in <module>()11 import sys12 sys.path.append("/home/kesci/input")
---> 13 import d2lzh1981 as d2l14 15 print(torch.__version__)
ModuleNotFoundError: No module named 'd2lzh1981'

get dataset

mnist_train = torchvision.datasets.FashionMNIST(root='/home/kesci/input/FashionMNIST2065', train=True, download=True, transform=transforms.ToTensor())
mnist_test = torchvision.datasets.FashionMNIST(root='/home/kesci/input/FashionMNIST2065', train=False, download=True, transform=transforms.ToTensor())
Downloading http://fashion-mnist.s3-website.eu-central-1.amazonaws.com/train-images-idx3-ubyte.gz to /home/kesci/input/FashionMNIST2065\FashionMNIST\raw\train-images-idx3-ubyte.gz
  0%|                                             | 0/26421880 [00:02<?, ?it/s]
---------------------------------------------------------------------------ConnectionAbortedError                    Traceback (most recent call last)<ipython-input-2-370499701405> in <module>()
----> 1 mnist_train = torchvision.datasets.FashionMNIST(root='/home/kesci/input/FashionMNIST2065', train=True, download=True, transform=transforms.ToTensor())2 mnist_test = torchvision.datasets.FashionMNIST(root='/home/kesci/input/FashionMNIST2065', train=False, download=True, transform=transforms.ToTensor())
D:\software\anaconda\lib\site-packages\torchvision\datasets\mnist.py in __init__(self, root, train, transform, target_transform, download)66 67         if download:
---> 68             self.download()69 70         if not self._check_exists():
D:\software\anaconda\lib\site-packages\torchvision\datasets\mnist.py in download(self)133         for url in self.urls:134             filename = url.rpartition('/')[2]
--> 135             download_and_extract_archive(url, download_root=self.raw_folder, filename=filename)136 137         # process and save as torch files
D:\software\anaconda\lib\site-packages\torchvision\datasets\utils.py in download_and_extract_archive(url, download_root, extract_root, filename, md5, remove_finished)246         filename = os.path.basename(url)247 
--> 248     download_url(url, download_root, filename, md5)249 250     archive = os.path.join(download_root, filename)
D:\software\anaconda\lib\site-packages\torchvision\datasets\utils.py in download_url(url, root, filename, md5)94                 )95             else:
---> 96                 raise e97 98 
D:\software\anaconda\lib\site-packages\torchvision\datasets\utils.py in download_url(url, root, filename, md5)82             urllib.request.urlretrieve(83                 url, fpath,
---> 84                 reporthook=gen_bar_updater()85             )86         except (urllib.error.URLError, IOError) as e:
D:\software\anaconda\lib\urllib\request.py in urlretrieve(url, filename, reporthook, data)274 275             while True:
--> 276                 block = fp.read(bs)277                 if not block:278                     break
D:\software\anaconda\lib\http\client.py in read(self, amt)445             # Amount is given, implement using readinto446             b = bytearray(amt)
--> 447             n = self.readinto(b)448             return memoryview(b)[:n].tobytes()449         else:
D:\software\anaconda\lib\http\client.py in readinto(self, b)489         # connection, and the user is reading more bytes than will be provided490         # (for example, reading in 1k chunks)
--> 491         n = self.fp.readinto(b)492         if not n and b:493             # Ideally, we would raise IncompleteRead if the content-length
D:\software\anaconda\lib\socket.py in readinto(self, b)587         while True:588             try:
--> 589                 return self._sock.recv_into(b)590             except timeout:591                 self._timeout_occurred = True
ConnectionAbortedError: [WinError 10053] 您的主机中的软件中止了一个已建立的连接。

class torchvision.datasets.FashionMNIST(root, train=True, transform=None, target_transform=None, download=False)

  • root(string)– 数据集的根目录,其中存放processed/training.pt和processed/test.pt文件。
  • train(bool, 可选)– 如果设置为True,从training.pt创建数据集,否则从test.pt创建。
  • download(bool, 可选)– 如果设置为True,从互联网下载数据并放到root文件夹下。如果root目录下已经存在数据,不会再次下载。
  • transform(可被调用 , 可选)– 一种函数或变换,输入PIL图片,返回变换之后的数据。如:transforms.RandomCrop。
  • target_transform(可被调用 , 可选)– 一种函数或变换,输入目标,进行变换。
# show result 
print('mnist_train', type(mnist_train))
print(len(mnist_train), len(mnist_test))
# 我们可以通过下标来访问任意一个样本
feature, label = mnist_train[0]
print(feature.shape, label)  # Channel x Height x Width

如果不做变换输入的数据是图像,我们可以看一下图片的类型参数:

mnist_PIL = torchvision.datasets.FashionMNIST(root='/home/kesci/input/FashionMNIST2065', train=True, download=True)
PIL_feature, label = mnist_PIL[0]
print(PIL_feature)
<PIL.Image.Image image mode=L size=28x28 at 0x7F57E8736F28>
# 本函数已保存在d2lzh包中方便以后使用
def get_fashion_mnist_labels(labels):text_labels = ['t-shirt', 'trouser', 'pullover', 'dress', 'coat','sandal', 'shirt', 'sneaker', 'bag', 'ankle boot']return [text_labels[int(i)] for i in labels]
def show_fashion_mnist(images, labels):d2l.use_svg_display()# 这里的_表示我们忽略(不使用)的变量_, figs = plt.subplots(1, len(images), figsize=(12, 12))for f, img, lbl in zip(figs, images, labels):f.imshow(img.view((28, 28)).numpy())f.set_title(lbl)f.axes.get_xaxis().set_visible(False)f.axes.get_yaxis().set_visible(False)plt.show()
X, y = [], []
for i in range(10):X.append(mnist_train[i][0]) # 将第i个feature加到X中y.append(mnist_train[i][1]) # 将第i个label加到y中
show_fashion_mnist(X, get_fashion_mnist_labels(y))
# 读取数据
batch_size = 256
num_workers = 4
train_iter = torch.utils.data.DataLoader(mnist_train, batch_size=batch_size, shuffle=True, num_workers=num_workers)
test_iter = torch.utils.data.DataLoader(mnist_test, batch_size=batch_size, shuffle=False, num_workers=num_workers)
start = time.time()
for X, y in train_iter:continue
print('%.2f sec' % (time.time() - start))
4.89 sec

softmax从零开始的实现

import torch
import torchvision
import numpy as np
import sys
sys.path.append("/home/kesci/input")
import d2lzh1981 as d2lprint(torch.__version__)
print(torchvision.__version__)
1.3.0
0.4.1a0+d94043a

获取训练集数据和测试集数据

batch_size = 256
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size)

模型参数初始化

num_inputs = 784
print(28*28)
num_outputs = 10W = torch.tensor(np.random.normal(0, 0.01, (num_inputs, num_outputs)), dtype=torch.float)
b = torch.zeros(num_outputs, dtype=torch.float)
784
W.requires_grad_(requires_grad=True)
b.requires_grad_(requires_grad=True)
tensor([0., 0., 0., 0., 0., 0., 0., 0., 0., 0.], requires_grad=True)

对多维Tensor按维度操作

X = torch.tensor([[1, 2, 3], [4, 5, 6]])
print(X.sum(dim=0, keepdim=True))  # dim为0,按照相同的列求和,并在结果中保留列特征
print(X.sum(dim=1, keepdim=True))  # dim为1,按照相同的行求和,并在结果中保留行特征
print(X.sum(dim=0, keepdim=False)) # dim为0,按照相同的列求和,不在结果中保留列特征
print(X.sum(dim=1, keepdim=False)) # dim为1,按照相同的行求和,不在结果中保留行特征
tensor([[5, 7, 9]])
tensor([[ 6],[15]])
tensor([5, 7, 9])
tensor([ 6, 15])

定义softmax操作

y ^ j = exp ⁡ ( o j ) ∑ i = 1 3 exp ⁡ ( o i ) \hat{y}_j = \frac{ \exp(o_j)}{\sum_{i=1}^3 \exp(o_i)} y^j=i=13exp(oi)exp(oj)

def softmax(X):X_exp = X.exp()partition = X_exp.sum(dim=1, keepdim=True)# print("X size is ", X_exp.size())# print("partition size is ", partition, partition.size())return X_exp / partition  # 这里应用了广播机制
X = torch.rand((2, 5))
X_prob = softmax(X)
print(X_prob, '\n', X_prob.sum(dim=1))
tensor([[0.1927, 0.2009, 0.1823, 0.1887, 0.2355],[0.1274, 0.1843, 0.2536, 0.2251, 0.2096]]) tensor([1., 1.])

softmax回归模型

o ( i ) = x ( i ) W + b , y ^ ( i ) = softmax ( o ( i ) ) . \begin{aligned} \boldsymbol{o}^{(i)} &= \boldsymbol{x}^{(i)} \boldsymbol{W} + \boldsymbol{b},\\ \boldsymbol{\hat{y}}^{(i)} &= \text{softmax}(\boldsymbol{o}^{(i)}). \end{aligned} o(i)y^(i)=x(i)W+b,=softmax(o(i)).

def net(X):return softmax(torch.mm(X.view((-1, num_inputs)), W) + b)

定义损失函数

H ( y ( i ) , y ^ ( i ) ) = − ∑ j = 1 q y j ( i ) log ⁡ y ^ j ( i ) , H\left(\boldsymbol y^{(i)}, \boldsymbol {\hat y}^{(i)}\right ) = -\sum_{j=1}^q y_j^{(i)} \log \hat y_j^{(i)}, H(y(i),y^(i))=j=1qyj(i)logy^j(i),

ℓ ( Θ ) = 1 n ∑ i = 1 n H ( y ( i ) , y ^ ( i ) ) , \ell(\boldsymbol{\Theta}) = \frac{1}{n} \sum_{i=1}^n H\left(\boldsymbol y^{(i)}, \boldsymbol {\hat y}^{(i)}\right ), (Θ)=n1i=1nH(y(i),y^(i)),

ℓ ( Θ ) = − ( 1 / n ) ∑ i = 1 n log ⁡ y ^ y ( i ) ( i ) \ell(\boldsymbol{\Theta}) = -(1/n) \sum_{i=1}^n \log \hat y_{y^{(i)}}^{(i)} (Θ)=(1/n)i=1nlogy^y(i)(i)

y_hat = torch.tensor([[0.1, 0.3, 0.6], [0.3, 0.2, 0.5]])
y = torch.LongTensor([0, 2])
y_hat.gather(1, y.view(-1, 1))
tensor([[0.1000],[0.5000]])
def cross_entropy(y_hat, y):return - torch.log(y_hat.gather(1, y.view(-1, 1)))

定义准确率

我们模型训练完了进行模型预测的时候,会用到我们这里定义的准确率。
def accuracy(y_hat, y):return (y_hat.argmax(dim=1) == y).float().mean().item()
print(accuracy(y_hat, y))
0.5
# 本函数已保存在d2lzh_pytorch包中方便以后使用。该函数将被逐步改进:它的完整实现将在“图像增广”一节中描述
def evaluate_accuracy(data_iter, net):acc_sum, n = 0.0, 0for X, y in data_iter:acc_sum += (net(X).argmax(dim=1) == y).float().sum().item()n += y.shape[0]return acc_sum / n
print(evaluate_accuracy(test_iter, net))
0.1457

训练模型

num_epochs, lr = 5, 0.1# 本函数已保存在d2lzh_pytorch包中方便以后使用
def train_ch3(net, train_iter, test_iter, loss, num_epochs, batch_size,params=None, lr=None, optimizer=None):for epoch in range(num_epochs):train_l_sum, train_acc_sum, n = 0.0, 0.0, 0for X, y in train_iter:y_hat = net(X)l = loss(y_hat, y).sum()# 梯度清零if optimizer is not None:optimizer.zero_grad()elif params is not None and params[0].grad is not None:for param in params:param.grad.data.zero_()l.backward()if optimizer is None:d2l.sgd(params, lr, batch_size)else:optimizer.step() train_l_sum += l.item()train_acc_sum += (y_hat.argmax(dim=1) == y).sum().item()n += y.shape[0]test_acc = evaluate_accuracy(test_iter, net)print('epoch %d, loss %.4f, train acc %.3f, test acc %.3f'% (epoch + 1, train_l_sum / n, train_acc_sum / n, test_acc))train_ch3(net, train_iter, test_iter, cross_entropy, num_epochs, batch_size, [W, b], lr)
epoch 1, loss 0.7870, train acc 0.751, test acc 0.794
epoch 2, loss 0.5702, train acc 0.813, test acc 0.809
epoch 3, loss 0.5254, train acc 0.826, test acc 0.814
epoch 4, loss 0.5009, train acc 0.832, test acc 0.822
epoch 5, loss 0.4853, train acc 0.837, test acc 0.828

模型预测

现在我们的模型训练完了,可以进行一下预测,我们的这个模型训练的到底准确不准确。
现在就可以演示如何对图像进行分类了。给定一系列图像(第三行图像输出),我们比较一下它们的真实标签(第一行文本输出)和模型预测结果(第二行文本输出)。

X, y = iter(test_iter).next()true_labels = d2l.get_fashion_mnist_labels(y.numpy())
pred_labels = d2l.get_fashion_mnist_labels(net(X).argmax(dim=1).numpy())
titles = [true + '\n' + pred for true, pred in zip(true_labels, pred_labels)]d2l.show_fashion_mnist(X[0:9], titles[0:9])

softmax的简洁实现

# 加载各种包或者模块
import torch
from torch import nn
from torch.nn import init
import numpy as np
import sys
sys.path.append("/home/kesci/input")
import d2lzh1981 as d2lprint(torch.__version__)
1.3.0

初始化参数和获取数据

batch_size = 256
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size)

定义网络模型

num_inputs = 784
num_outputs = 10class LinearNet(nn.Module):def __init__(self, num_inputs, num_outputs):super(LinearNet, self).__init__()self.linear = nn.Linear(num_inputs, num_outputs)def forward(self, x): # x 的形状: (batch, 1, 28, 28)y = self.linear(x.view(x.shape[0], -1))return y# net = LinearNet(num_inputs, num_outputs)class FlattenLayer(nn.Module):def __init__(self):super(FlattenLayer, self).__init__()def forward(self, x): # x 的形状: (batch, *, *, ...)return x.view(x.shape[0], -1)from collections import OrderedDict
net = nn.Sequential(# FlattenLayer(),# LinearNet(num_inputs, num_outputs) OrderedDict([('flatten', FlattenLayer()),('linear', nn.Linear(num_inputs, num_outputs))]) # 或者写成我们自己定义的 LinearNet(num_inputs, num_outputs) 也可以)

初始化模型参数

init.normal_(net.linear.weight, mean=0, std=0.01)
init.constant_(net.linear.bias, val=0)
Parameter containing:
tensor([0., 0., 0., 0., 0., 0., 0., 0., 0., 0.], requires_grad=True)

定义损失函数

loss = nn.CrossEntropyLoss() # 下面是他的函数原型
# class torch.nn.CrossEntropyLoss(weight=None, size_average=None, ignore_index=-100, reduce=None, reduction='mean')

定义优化函数

optimizer = torch.optim.SGD(net.parameters(), lr=0.1) # 下面是函数原型
# class torch.optim.SGD(params, lr=, momentum=0, dampening=0, weight_decay=0, nesterov=False)

训练

num_epochs = 5
d2l.train_ch3(net, train_iter, test_iter, loss, num_epochs, batch_size, None, None, optimizer)
epoch 1, loss 0.0031, train acc 0.749, test acc 0.794
epoch 2, loss 0.0022, train acc 0.814, test acc 0.800
epoch 3, loss 0.0021, train acc 0.826, test acc 0.811
epoch 4, loss 0.0020, train acc 0.833, test acc 0.826
epoch 5, loss 0.0019, train acc 0.837, test acc 0.825

这篇关于《动手学深度学习》task1_2 Softmax与分类模型的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/457154

相关文章

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

基于人工智能的图像分类系统

目录 引言项目背景环境准备 硬件要求软件安装与配置系统设计 系统架构关键技术代码示例 数据预处理模型训练模型预测应用场景结论 1. 引言 图像分类是计算机视觉中的一个重要任务,目标是自动识别图像中的对象类别。通过卷积神经网络(CNN)等深度学习技术,我们可以构建高效的图像分类系统,广泛应用于自动驾驶、医疗影像诊断、监控分析等领域。本文将介绍如何构建一个基于人工智能的图像分类系统,包括环境

【前端学习】AntV G6-08 深入图形与图形分组、自定义节点、节点动画(下)

【课程链接】 AntV G6:深入图形与图形分组、自定义节点、节点动画(下)_哔哩哔哩_bilibili 本章十吾老师讲解了一个复杂的自定义节点中,应该怎样去计算和绘制图形,如何给一个图形制作不间断的动画,以及在鼠标事件之后产生动画。(有点难,需要好好理解) <!DOCTYPE html><html><head><meta charset="UTF-8"><title>06

学习hash总结

2014/1/29/   最近刚开始学hash,名字很陌生,但是hash的思想却很熟悉,以前早就做过此类的题,但是不知道这就是hash思想而已,说白了hash就是一个映射,往往灵活利用数组的下标来实现算法,hash的作用:1、判重;2、统计次数;

认识、理解、分类——acm之搜索

普通搜索方法有两种:1、广度优先搜索;2、深度优先搜索; 更多搜索方法: 3、双向广度优先搜索; 4、启发式搜索(包括A*算法等); 搜索通常会用到的知识点:状态压缩(位压缩,利用hash思想压缩)。

Andrej Karpathy最新采访:认知核心模型10亿参数就够了,AI会打破教育不公的僵局

夕小瑶科技说 原创  作者 | 海野 AI圈子的红人,AI大神Andrej Karpathy,曾是OpenAI联合创始人之一,特斯拉AI总监。上一次的动态是官宣创办一家名为 Eureka Labs 的人工智能+教育公司 ,宣布将长期致力于AI原生教育。 近日,Andrej Karpathy接受了No Priors(投资博客)的采访,与硅谷知名投资人 Sara Guo 和 Elad G

零基础学习Redis(10) -- zset类型命令使用

zset是有序集合,内部除了存储元素外,还会存储一个score,存储在zset中的元素会按照score的大小升序排列,不同元素的score可以重复,score相同的元素会按照元素的字典序排列。 1. zset常用命令 1.1 zadd  zadd key [NX | XX] [GT | LT]   [CH] [INCR] score member [score member ...]

Retrieval-based-Voice-Conversion-WebUI模型构建指南

一、模型介绍 Retrieval-based-Voice-Conversion-WebUI(简称 RVC)模型是一个基于 VITS(Variational Inference with adversarial learning for end-to-end Text-to-Speech)的简单易用的语音转换框架。 具有以下特点 简单易用:RVC 模型通过简单易用的网页界面,使得用户无需深入了