C#,数值计算——计算实对称矩阵所有特征值和特征向量的雅可比(Jacobi)方法与源程序

本文主要是介绍C#,数值计算——计算实对称矩阵所有特征值和特征向量的雅可比(Jacobi)方法与源程序,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1 文本格式

using System;

namespace Legalsoft.Truffer
{
    /// <summary>
    /// Computes all eigenvalues and eigenvectors of
    /// a real symmetric matrix by Jacobi's method.
    /// </summary>
    public class Jacobi
    {
        private int n { get; set; }
        private double[,] a;
        private double[,] v;
        private double[] d;
        private int nrot { get; set; }
        private double EPS { get; set; }


        /// <summary>
        /// Computes all eigenvalues and eigenvectors of a real symmetric matrix
        /// a[0..n - 1][0..n - 1]. On output, d[0..n - 1] contains the eigenvalues of a
        /// sorted into descending order, while v[0..n - 1][0..n - 1] is a matrix whose
        /// columns contain the corresponding normalized eigenvectors.nrot contains
        /// the number of Jacobi rotations that were required.Only the upper triangle
        /// of a is accessed.
        /// </summary>
        /// <param name="aa"></param>
        /// <exception cref="Exception"></exception>
        public Jacobi(double[,] aa)
        {
            this.n = aa.GetLength(0);
            this.a = aa;
            this.v = new double[n, n];
            this.d = new double[n];
            this.nrot = 0;
            this.EPS = float.Epsilon;

            double[] b = new double[n];
            double[] z = new double[n];

            for (int ip = 0; ip < n; ip++)
            {
                for (int iq = 0; iq < n; iq++)
                {
                    v[ip, iq] = 0.0;
                }
                v[ip, ip] = 1.0;
            }
            for (int ip = 0; ip < n; ip++)
            {
                b[ip] = d[ip] = a[ip, ip];
                z[ip] = 0.0;
            }
            for (int i = 1; i <= 50; i++)
            {
                double sm = 0.0;
                for (int ip = 0; ip < n - 1; ip++)
                {
                    for (int iq = ip + 1; iq < n; iq++)
                    {
                        sm += Math.Abs(a[ip, iq]);
                    }
                }
                //if (sm == 0.0)
                if (Math.Abs(sm) <= float.Epsilon)
                {
                    eigsrt( d,  v);
                    return;
                }
                double tresh;
                if (i < 4)
                {
                    tresh = 0.2 * sm / (n * n);
                }
                else
                {
                    tresh = 0.0;
                }
                for (int ip = 0; ip < n - 1; ip++)
                {
                    for (int iq = ip + 1; iq < n; iq++)
                    {
                        double g = 100.0 * Math.Abs(a[ip, iq]);
                        if (i > 4 && g <= EPS * Math.Abs(d[ip]) && g <= EPS * Math.Abs(d[iq]))
                        {
                            a[ip, iq] = 0.0;
                        }
                        else if (Math.Abs(a[ip, iq]) > tresh)
                        {
                            double h = d[iq] - d[ip];
                            double t;
                            if (g <= EPS * Math.Abs(h))
                            {
                                t = (a[ip, iq]) / h;
                            }
                            else
                            {
                                double theta = 0.5 * h / (a[ip, iq]);
                                t = 1.0 / (Math.Abs(theta) + Math.Sqrt(1.0 + theta * theta));
                                if (theta < 0.0)
                                {
                                    t = -t;
                                }
                            }
                            double c = 1.0 / Math.Sqrt(1 + t * t);
                            double s = t * c;
                            double tau = s / (1.0 + c);
                            h = t * a[ip, iq];
                            z[ip] -= h;
                            z[iq] += h;
                            d[ip] -= h;
                            d[iq] += h;
                            a[ip, iq] = 0.0;
                            for (int j = 0; j < ip; j++)
                            {
                                rot( a, s, tau, j, ip, j, iq);
                            }
                            for (int j = ip + 1; j < iq; j++)
                            {
                                rot( a, s, tau, ip, j, j, iq);
                            }
                            for (int j = iq + 1; j < n; j++)
                            {
                                rot( a, s, tau, ip, j, iq, j);
                            }
                            for (int j = 0; j < n; j++)
                            {
                                rot( v, s, tau, j, ip, j, iq);
                            }
                            ++nrot;
                        }
                    }
                }
                for (int ip = 0; ip < n; ip++)
                {
                    b[ip] += z[ip];
                    d[ip] = b[ip];
                    z[ip] = 0.0;
                }
            }
            throw new Exception("Too many iterations in routine jacobi");
        }

        public void rot(double[,] a, double s, double tau, int i, int j, int k, int l)
        {
            double g = a[i, j];
            double h = a[k, l];
            a[i, j] = g - s * (h + g * tau);
            a[k, l] = h + s * (g - h * tau);
        }

        /// <summary>
        /// Given the eigenvalues d[0..n - 1] and(optionally) the eigenvectors
        /// v[0..n - 1][0..n - 1] as determined by Jacobi or tqli, this routine sorts the
        /// eigenvalues into descending order and rearranges the columns of v
        /// correspondingly.The method is straight insertion.
        /// </summary>
        /// <param name="d"></param>
        /// <param name="v"></param>
        public static void eigsrt(double[] d, double[,] v)
        {
            int k;
            int n = d.Length;
            for (int i = 0; i < n - 1; i++)
            {
                double p = d[k = i];
                for (int j = i; j < n; j++)
                {
                    if (d[j] >= p)
                    {
                        p = d[k = j];
                    }
                }
                if (k != i)
                {
                    d[k] = d[i];
                    d[i] = p;
                    if (v != null)
                    {
                        for (int j = 0; j < n; j++)
                        {
                            p = v[j, i];
                            v[j, i] = v[j, k];
                            v[j, k] = p;
                        }
                    }
                }
            }
        }
    }
}
 

2 代码格式

using System;namespace Legalsoft.Truffer
{/// <summary>/// Computes all eigenvalues and eigenvectors of/// a real symmetric matrix by Jacobi's method./// </summary>public class Jacobi{private int n { get; set; }private double[,] a;private double[,] v;private double[] d;private int nrot { get; set; }private double EPS { get; set; }/// <summary>/// Computes all eigenvalues and eigenvectors of a real symmetric matrix/// a[0..n - 1][0..n - 1]. On output, d[0..n - 1] contains the eigenvalues of a/// sorted into descending order, while v[0..n - 1][0..n - 1] is a matrix whose/// columns contain the corresponding normalized eigenvectors.nrot contains/// the number of Jacobi rotations that were required.Only the upper triangle/// of a is accessed./// </summary>/// <param name="aa"></param>/// <exception cref="Exception"></exception>public Jacobi(double[,] aa){this.n = aa.GetLength(0);this.a = aa;this.v = new double[n, n];this.d = new double[n];this.nrot = 0;this.EPS = float.Epsilon;double[] b = new double[n];double[] z = new double[n];for (int ip = 0; ip < n; ip++){for (int iq = 0; iq < n; iq++){v[ip, iq] = 0.0;}v[ip, ip] = 1.0;}for (int ip = 0; ip < n; ip++){b[ip] = d[ip] = a[ip, ip];z[ip] = 0.0;}for (int i = 1; i <= 50; i++){double sm = 0.0;for (int ip = 0; ip < n - 1; ip++){for (int iq = ip + 1; iq < n; iq++){sm += Math.Abs(a[ip, iq]);}}//if (sm == 0.0)if (Math.Abs(sm) <= float.Epsilon){eigsrt( d,  v);return;}double tresh;if (i < 4){tresh = 0.2 * sm / (n * n);}else{tresh = 0.0;}for (int ip = 0; ip < n - 1; ip++){for (int iq = ip + 1; iq < n; iq++){double g = 100.0 * Math.Abs(a[ip, iq]);if (i > 4 && g <= EPS * Math.Abs(d[ip]) && g <= EPS * Math.Abs(d[iq])){a[ip, iq] = 0.0;}else if (Math.Abs(a[ip, iq]) > tresh){double h = d[iq] - d[ip];double t;if (g <= EPS * Math.Abs(h)){t = (a[ip, iq]) / h;}else{double theta = 0.5 * h / (a[ip, iq]);t = 1.0 / (Math.Abs(theta) + Math.Sqrt(1.0 + theta * theta));if (theta < 0.0){t = -t;}}double c = 1.0 / Math.Sqrt(1 + t * t);double s = t * c;double tau = s / (1.0 + c);h = t * a[ip, iq];z[ip] -= h;z[iq] += h;d[ip] -= h;d[iq] += h;a[ip, iq] = 0.0;for (int j = 0; j < ip; j++){rot( a, s, tau, j, ip, j, iq);}for (int j = ip + 1; j < iq; j++){rot( a, s, tau, ip, j, j, iq);}for (int j = iq + 1; j < n; j++){rot( a, s, tau, ip, j, iq, j);}for (int j = 0; j < n; j++){rot( v, s, tau, j, ip, j, iq);}++nrot;}}}for (int ip = 0; ip < n; ip++){b[ip] += z[ip];d[ip] = b[ip];z[ip] = 0.0;}}throw new Exception("Too many iterations in routine jacobi");}public void rot(double[,] a, double s, double tau, int i, int j, int k, int l){double g = a[i, j];double h = a[k, l];a[i, j] = g - s * (h + g * tau);a[k, l] = h + s * (g - h * tau);}/// <summary>/// Given the eigenvalues d[0..n - 1] and(optionally) the eigenvectors/// v[0..n - 1][0..n - 1] as determined by Jacobi or tqli, this routine sorts the/// eigenvalues into descending order and rearranges the columns of v/// correspondingly.The method is straight insertion./// </summary>/// <param name="d"></param>/// <param name="v"></param>public static void eigsrt(double[] d, double[,] v){int k;int n = d.Length;for (int i = 0; i < n - 1; i++){double p = d[k = i];for (int j = i; j < n; j++){if (d[j] >= p){p = d[k = j];}}if (k != i){d[k] = d[i];d[i] = p;if (v != null){for (int j = 0; j < n; j++){p = v[j, i];v[j, i] = v[j, k];v[j, k] = p;}}}}}}
}

这篇关于C#,数值计算——计算实对称矩阵所有特征值和特征向量的雅可比(Jacobi)方法与源程序的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/457011

相关文章

springboot+redis实现订单过期(超时取消)功能的方法详解

《springboot+redis实现订单过期(超时取消)功能的方法详解》在SpringBoot中使用Redis实现订单过期(超时取消)功能,有多种成熟方案,本文为大家整理了几个详细方法,文中的示例代... 目录一、Redis键过期回调方案(推荐)1. 配置Redis监听器2. 监听键过期事件3. Redi

C#中checked关键字的使用小结

《C#中checked关键字的使用小结》本文主要介绍了C#中checked关键字的使用,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学... 目录✅ 为什么需要checked? 问题:整数溢出是“静默China编程”的(默认)checked的三种用

C#中预处理器指令的使用小结

《C#中预处理器指令的使用小结》本文主要介绍了C#中预处理器指令的使用,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录 第 1 名:#if/#else/#elif/#endif✅用途:条件编译(绝对最常用!) 典型场景: 示例

基于SpringBoot实现分布式锁的三种方法

《基于SpringBoot实现分布式锁的三种方法》这篇文章主要为大家详细介绍了基于SpringBoot实现分布式锁的三种方法,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、基于Redis原生命令实现分布式锁1. 基础版Redis分布式锁2. 可重入锁实现二、使用Redisso

C#实现将XML数据自动化地写入Excel文件

《C#实现将XML数据自动化地写入Excel文件》在现代企业级应用中,数据处理与报表生成是核心环节,本文将深入探讨如何利用C#和一款优秀的库,将XML数据自动化地写入Excel文件,有需要的小伙伴可以... 目录理解XML数据结构与Excel的对应关系引入高效工具:使用Spire.XLS for .NETC

自定义注解SpringBoot防重复提交AOP方法详解

《自定义注解SpringBoot防重复提交AOP方法详解》该文章描述了一个防止重复提交的流程,通过HttpServletRequest对象获取请求信息,生成唯一标识,使用Redis分布式锁判断请求是否... 目录防重复提交流程引入依赖properties配置自定义注解切面Redis工具类controller

C#如何在Excel文档中获取分页信息

《C#如何在Excel文档中获取分页信息》在日常工作中,我们经常需要处理大量的Excel数据,本文将深入探讨如何利用Spire.XLSfor.NET,高效准确地获取Excel文档中的分页信息,包括水平... 目录理解Excel中的分页机制借助 Spire.XLS for .NET 获取分页信息为什么选择 S

Java调用DeepSeek API的8个高频坑与解决方法

《Java调用DeepSeekAPI的8个高频坑与解决方法》现在大模型开发特别火,DeepSeek因为中文理解好、反应快、还便宜,不少Java开发者都用它,本文整理了最常踩的8个坑,希望对... 目录引言一、坑 1:Token 过期未处理,鉴权异常引发服务中断问题本质典型错误代码解决方案:实现 Token

Nginx 访问控制的多种方法

《Nginx访问控制的多种方法》本文系统介绍了Nginx实现Web访问控制的多种方法,包括IP黑白名单、路径/方法/参数控制、HTTP基本认证、防盗链机制、客户端证书校验、限速限流、地理位置控制等基... 目录一、IP 白名单与黑名单1. 允许/拒绝指定IP2. 全局黑名单二、基于路径、方法、参数的访问控制

C#高效实现在Word文档中自动化创建图表的可视化方案

《C#高效实现在Word文档中自动化创建图表的可视化方案》本文将深入探讨如何利用C#,结合一款功能强大的第三方库,实现在Word文档中自动化创建图表,为你的数据呈现和报告生成提供一套实用且高效的解决方... 目录Word文档图表自动化:为什么选择C#?从零开始:C#实现Word文档图表的基本步骤深度优化:C