Python处理Point, MultiPolygon, Polygon, LineString等Geo地理形状数据

本文主要是介绍Python处理Point, MultiPolygon, Polygon, LineString等Geo地理形状数据,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

依赖库

from shapely import Polygon, Point, LineString
import re

自编写函数

1. 将 字符串Polygon/MultiPolygon数据 转换为 坐标数据

输入输出

调用方式fork_MULTIPOLYGON_POLYGON_to_POLYGONLIST(str_polygon)

输入字符串形式的Polygon/MultiPolygon数据(支持三种格式)

输出:一个双层嵌套列表,顶层列表的元素是一个个POLYGON,底层列表的元素是一个POLYGON里的一个个坐标点

功能描述:将 Polygon/MultiPolygon 转化为 一个列表,这个列表里有多个POLYGON列表,每个POLYGON列表中的经纬度坐标用元组表示

样例

格式一:

MULTIPOLYGON (((-73.97535722895489 40.79358795668606, -73.97550491442216 40.7932206693501, -73.97571880885164 40.79329900902139, -73.97557038329896 40.793666024933465, -73.97535722895489 40.79358795668606)), ((-73.97552582561218 40.79316866412968, -73.97558333155439 40.79302564935169, -73.97579761926521 40.79310413236238, -73.97573982501896 40.793247041771274, -73.97552582561218 40.79316866412968)))

输出

[
[(-73.97535722895489, 40.79358795668606), (-73.97550491442216, 40.7932206693501), (-73.97571880885164, 40.79329900902139), (-73.97557038329896, 40.793666024933465), (-73.97535722895489, 40.79358795668606)],
[(-73.97552582561218, 40.79316866412968), (-73.97558333155439, 40.79302564935169), (-73.97579761926521, 40.79310413236238), (-73.97573982501896, 40.793247041771274), (-73.97552582561218, 40.79316866412968)]
]

格式二:

POLYGON ((-73.97759524402524 40.7618905, -73.97760683658178 40.76183484508208, -73.9776404794912 40.76178463805529, -73.97769287955111 40.76174479353323, -73.97775890747857 40.76171921177534, -73.9778321 40.761710396902316, -73.97790529252143 40.76171921177534, -73.97797132044889 40.76174479353323, -73.9780237205088 40.76178463805529, -73.97805736341822 40.76183484508208, -73.97806895597476 40.7618905, -73.97805736341822 40.76194615491792, -73.9780237205088 40.76199636194471, -73.97797132044889 40.76203620646677, -73.97790529252143 40.762061788224656, -73.9778321 40.76207060309768, -73.97775890747857 40.762061788224656, -73.97769287955111 40.76203620646677, -73.9776404794912 40.76199636194471, -73.97760683658178 40.76194615491792, -73.97759524402524 40.7618905))

输出

[
[(-73.97759524402524, 40.7618905), (-73.97760683658178, 40.76183484508208), (-73.9776404794912, 40.76178463805529), (-73.97769287955111, 40.76174479353323), (-73.97775890747857, 40.76171921177534), (-73.9778321, 40.761710396902316), (-73.97790529252143, 40.76171921177534), (-73.97797132044889, 40.76174479353323), (-73.9780237205088, 40.76178463805529), (-73.97805736341822, 40.76183484508208), (-73.97806895597476, 40.7618905), (-73.97805736341822, 40.76194615491792), (-73.9780237205088, 40.76199636194471), (-73.97797132044889, 40.76203620646677), (-73.97790529252143, 40.762061788224656), (-73.9778321, 40.76207060309768), (-73.97775890747857, 40.762061788224656), (-73.97769287955111, 40.76203620646677), (-73.9776404794912, 40.76199636194471), (-73.97760683658178, 40.76194615491792), (-73.97759524402524, 40.7618905)]
]

格式三:

POLYGON ((-73.98635378499995 40.764514924000025, -73.98637627999994 40.76448596900008, -73.98622909499994 40.764422067000055, -73.98624709199999 40.76439890300003, -73.98608441399995 40.764328275000025, -73.98613390299994 40.76426457500003, -73.98599446599997 40.764204035000034, -73.98598546799997 40.76421561700005, -73.98560588899994 40.764050816000065, -73.98557889499995 40.76408556100006, -73.98553241599996 40.76406538100008, -73.98555491099995 40.764036427000065, -73.98557815099997 40.764046517000054, -73.98560064599997 40.76401756200005, -73.98557740699994 40.76400747300005, -73.98567188699997 40.76388586200005, -73.98639231199996 40.76419864800005, -73.98637881499997 40.76421602000005, -73.98653374599996 40.76428328600008, -73.98654724199997 40.76426591300003, -73.98671766799998 40.76433990400005, -73.98672666499994 40.76432832300003, -73.98679638399994 40.764358591000075, -73.98678288799994 40.76437596400007, -73.98689133999994 40.76442305000006, -73.98690483699994 40.76440567700007, -73.98709075499994 40.76448639400007, -73.98707275899994 40.76450955800004, -73.98712698499997 40.76453310000005, -73.98711348899997 40.76455047300004, -73.98733039399997 40.764644643000054, -73.98736188599997 40.764604106000036, -73.98740836599995 40.764624285000025, -73.98742186299995 40.76460691200003, -73.98777046199996 40.76475825500006, -73.98740154699993 40.765233118000026, -73.98737055999999 40.76521966400003, -73.98736156199993 40.76523124600004, -73.98676506899994 40.76497227900006, -73.98678756299995 40.76494332400006, -73.98646995199994 40.76480543100007, -73.98646095399994 40.76481701300003, -73.98620531599994 40.764706025000066, -73.98619181899994 40.76472339800006, -73.98589744899994 40.76459559400007, -73.98605041699994 40.76439870100006, -73.98625182799998 40.764486146000024, -73.98624282899993 40.76449772900003, -73.98635128199999 40.76454481400003, -73.98634678299999 40.76455060600006, -73.98630804999993 40.76453378900004, -73.98624506299996 40.76461486200003, -73.98626055599993 40.76462158900006, -73.98622006499994 40.76467370700004, -73.98628203699997 40.76470061300006, -73.98630003399995 40.76467744900003, -73.98626904799994 40.76466399700007, -73.98630953899993 40.76461187800004, -73.98636376499996 40.76463542100004, -73.98631427599997 40.764699122000025, -73.98638399499998 40.76472939100006, -73.98652796399995 40.764544080000064, -73.98650472399999 40.764533990000075, -73.98647772999993 40.76456873600006, -73.98635378499995 40.764514924000025), (-73.98698650299997 40.764820600000064, -73.98700449999995 40.76479743600004, -73.98715943199994 40.76486470000003, -73.98712793899995 40.76490523700005, -73.98715117899997 40.76491532700004, -73.98711518699997 40.76496165400005, -73.98714617299999 40.764975108000044, -73.98725864899995 40.76483033300008, -73.98698751699999 40.76471262100006, -73.98697401999993 40.76472999400005, -73.98678035399996 40.76464591300004, -73.98676685699996 40.76466328600003, -73.98680095699996 40.76475940500006, -73.98683156999994 40.76475333500008, -73.98698650299997 40.764820600000064))

输出

/home/lizhicheng/UrbanKG/venv/bin/python /home/lizhicheng/UrbanKG/src/test.py 
[
[(-73.98635378499995, 40.764514924000025), (-73.98637627999994, 40.76448596900008), (-73.98622909499994, 40.764422067000055), (-73.98624709199999, 40.76439890300003), (-73.98608441399995, 40.764328275000025), (-73.98613390299994, 40.76426457500003), (-73.98599446599997, 40.764204035000034), (-73.98598546799997, 40.76421561700005), (-73.98560588899994, 40.764050816000065), (-73.98557889499995, 40.76408556100006), (-73.98553241599996, 40.76406538100008), (-73.98555491099995, 40.764036427000065), (-73.98557815099997, 40.764046517000054), (-73.98560064599997, 40.76401756200005), (-73.98557740699994, 40.76400747300005), (-73.98567188699997, 40.76388586200005), (-73.98639231199996, 40.76419864800005), (-73.98637881499997, 40.76421602000005), (-73.98653374599996, 40.76428328600008), (-73.98654724199997, 40.76426591300003), (-73.98671766799998, 40.76433990400005), (-73.98672666499994, 40.76432832300003), (-73.98679638399994, 40.764358591000075), (-73.98678288799994, 40.76437596400007), (-73.98689133999994, 40.76442305000006), (-73.98690483699994, 40.76440567700007), (-73.98709075499994, 40.76448639400007), (-73.98707275899994, 40.76450955800004), (-73.98712698499997, 40.76453310000005), (-73.98711348899997, 40.76455047300004), (-73.98733039399997, 40.764644643000054), (-73.98736188599997, 40.764604106000036), (-73.98740836599995, 40.764624285000025), (-73.98742186299995, 40.76460691200003), (-73.98777046199996, 40.76475825500006), (-73.98740154699993, 40.765233118000026), (-73.98737055999999, 40.76521966400003), (-73.98736156199993, 40.76523124600004), (-73.98676506899994, 40.76497227900006), (-73.98678756299995, 40.76494332400006), (-73.98646995199994, 40.76480543100007), (-73.98646095399994, 40.76481701300003), (-73.98620531599994, 40.764706025000066), (-73.98619181899994, 40.76472339800006), (-73.98589744899994, 40.76459559400007), (-73.98605041699994, 40.76439870100006), (-73.98625182799998, 40.764486146000024), (-73.98624282899993, 40.76449772900003), (-73.98635128199999, 40.76454481400003), (-73.98634678299999, 40.76455060600006), (-73.98630804999993, 40.76453378900004), (-73.98624506299996, 40.76461486200003), (-73.98626055599993, 40.76462158900006), (-73.98622006499994, 40.76467370700004), (-73.98628203699997, 40.76470061300006), (-73.98630003399995, 40.76467744900003), (-73.98626904799994, 40.76466399700007), (-73.98630953899993, 40.76461187800004), (-73.98636376499996, 40.76463542100004), (-73.98631427599997, 40.764699122000025), (-73.98638399499998, 40.76472939100006), (-73.98652796399995, 40.764544080000064), (-73.98650472399999, 40.764533990000075), (-73.98647772999993, 40.76456873600006), (-73.98635378499995, 40.764514924000025)], 
[(-73.98698650299997, 40.764820600000064), (-73.98700449999995, 40.76479743600004), (-73.98715943199994, 40.76486470000003), (-73.98712793899995, 40.76490523700005), (-73.98715117899997, 40.76491532700004), (-73.98711518699997, 40.76496165400005), (-73.98714617299999, 40.764975108000044), (-73.98725864899995, 40.76483033300008), (-73.98698751699999, 40.76471262100006), (-73.98697401999993, 40.76472999400005), (-73.98678035399996, 40.76464591300004), (-73.98676685699996, 40.76466328600003), (-73.98680095699996, 40.76475940500006), (-73.98683156999994, 40.76475333500008), (-73.98698650299997, 40.764820600000064)]
]

函数代码
def extract_content_from_MULTIPOLYGON(string):pattern = r'\(\((.*?)\)\)'  # 定义正则表达式模式,使用非贪婪匹配matches = re.findall(pattern, string)  # 使用findall函数查找所有匹配项if not matches:  # 如果没有匹配项,返回空列表return []else:return matchesdef MULTIPOLYGON_to_POLYGONLIST(multpolygon):prefix = 'MULTIPOLYGON'multpolygon = multpolygon[len(prefix):]multpolygon = multpolygon[2:-1]list_polygon_str = extract_content_from_MULTIPOLYGON(multpolygon)if not list_polygon_str:return []else:list_POLYGON = []for polygon_str in list_polygon_str:list_point_str = polygon_str.split(',')POLYGON = []for point in list_point_str:if point[0] == ' ':point_str = point[1:]else:point_str = pointpoint_list = point_str.split(' ')# dest_str = point_list[0] + ',' + point_list[1]longitude = float(point_list[0])latitude = float(point_list[1])Tuple = (longitude, latitude)POLYGON.append(Tuple)# POLYGON.append(dest_str)list_POLYGON.append(POLYGON)return list_POLYGONdef fork_MULTIPOLYGON_POLYGON_to_POLYGONLIST(input):if input.startswith('MULTIPOLYGON'):return MULTIPOLYGON_to_POLYGONLIST(input)else:prefix = 'POLYGON'input = input[len(prefix):]input = input[3:-2]if '(' in input or ')' in input:input = '(' + input + ')'arr = input.split('), (')list_str = []for item in arr:new_item = itemif item[0] == '(':new_item = item[1:]if item[-1] == ')':new_item = item[:-1]list_str.append(new_item)list_POLYGON = []for polygon_str in list_str:list_point_str = polygon_str.split(',')POLYGON = []for point in list_point_str:if point[0] == ' ':point_str = point[1:]else:point_str = pointpoint_list = point_str.split(' ')# dest_str = point_list[0] + ',' + point_list[1]longitude = float(point_list[0])latitude = float(point_list[1])Tuple = (longitude, latitude)POLYGON.append(Tuple)# POLYGON.append(dest_str)list_POLYGON.append(POLYGON)return list_POLYGONelse:  # 只可能有一个polygon# 按 ,split 如果以‘ ’开头,把空格去掉arr_str_coordinate = input.split(',')str_coordinate = []for coordinate in arr_str_coordinate:if coordinate[0] == ' ':str_coordinate.append(coordinate[1:])  # 如果开头有空格,则去掉空格else:str_coordinate.append(coordinate)list_point = []for str_coord in str_coordinate:a, b = str_coord.split(' ')longitude = float(a)latitude = float(b)list_point.append((longitude, latitude))list_POLYGON = [list_point]return list_POLYGON

2. 将 Polygon/MultiPolygon坐标数据 转换为 shapely库中的Polygon类对象的列表

输入输出

调用方式list_polygon = list_POLYGON2POLYGONs(list_POLYGON)

输入:1函数的输出——“一个双层嵌套列表,顶层列表的元素是一个个POLYGON,底层列表的元素是一个POLYGON里的一个个坐标点”

输出:shapely库中的Polygon类对象的列表

功能描述:将 Polygon/MultiPolygon坐标数据 转换为 shapely库中的Polygon类对象的列表

样例
# input为1函数介绍中的格式一样例
input = 'MULTIPOLYGON (((-73.97535722895489 40.79358795668606, -73.97550491442216 40.7932206693501, -73.97571880885164 40.79329900902139, -73.97557038329896 40.793666024933465, -73.97535722895489 40.79358795668606)), ((-73.97552582561218 40.79316866412968, -73.97558333155439 40.79302564935169, -73.97579761926521 40.79310413236238, -73.97573982501896 40.793247041771274, -73.97552582561218 40.79316866412968)))'
list_POLYGON = fork_MULTIPOLYGON_POLYGON_to_POLYGONLIST(input)
list_polygon = list_POLYGON2POLYGONs(list_POLYGON)
print(list_polygon)

控制台输出的内容为:

[
<POLYGON ((-73.975 40.794, -73.976 40.793, -73.976 40.793, -73.976 40.794, -...>, 
<POLYGON ((-73.976 40.793, -73.976 40.793, -73.976 40.793, -73.976 40.793, -...>
]
函数代码
def list_POLYGON2POLYGONs(list_POLYGON):list_polygon = []for POLYGON in list_POLYGON:polygon = Polygon(POLYGON)list_polygon.append(polygon)return list_polygon

3. 将字符串形式的LineString 转化为 shapely库中的LineString类对象

输入输出

调用方式line_string = get_LINESTRING(geometry)

输入:字符串形式的LineString
形如:

LINESTRING (-73.9477940 40.7203470, -73.9478810 40.7209187, -73.9479402 40.7213083, -73.9479510 40.7213790)

输出:shapely库中的LineString类对象

样例
geometry = 'LINESTRING (-73.9477940 40.7203470, -73.9478810 40.7209187, -73.9479402 40.7213083, -73.9479510 40.7213790)'line_string = get_LINESTRING(geometry)print(line_string)
print(type(line_string))

控制台输出如下:

LINESTRING (-73.947794 40.720347, -73.947881 40.7209187, -73.9479402 40.7213083, -73.947951 40.721379)
<class 'shapely.geometry.linestring.LineString'>
函数代码
def get_LINESTRING(input):prefix = 'LINESTRING 'input = input[len(prefix):]input = input[1:-1]cord_arr = input.split(',')points = []for cord in cord_arr:point_str = cordif cord[0] == ' ':point_str = point_str[1:]x, y = point_str.split(' ')tup = (float(x), float(y))points.append(tup)line_string = LineString(points)return line_string

这篇关于Python处理Point, MultiPolygon, Polygon, LineString等Geo地理形状数据的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/456861

相关文章

Python将博客内容html导出为Markdown格式

《Python将博客内容html导出为Markdown格式》Python将博客内容html导出为Markdown格式,通过博客url地址抓取文章,分析并提取出文章标题和内容,将内容构建成html,再转... 目录一、为什么要搞?二、准备如何搞?三、说搞咱就搞!抓取文章提取内容构建html转存markdown

Python获取中国节假日数据记录入JSON文件

《Python获取中国节假日数据记录入JSON文件》项目系统内置的日历应用为了提升用户体验,特别设置了在调休日期显示“休”的UI图标功能,那么问题是这些调休数据从哪里来呢?我尝试一种更为智能的方法:P... 目录节假日数据获取存入jsON文件节假日数据读取封装完整代码项目系统内置的日历应用为了提升用户体验,

Python FastAPI+Celery+RabbitMQ实现分布式图片水印处理系统

《PythonFastAPI+Celery+RabbitMQ实现分布式图片水印处理系统》这篇文章主要为大家详细介绍了PythonFastAPI如何结合Celery以及RabbitMQ实现简单的分布式... 实现思路FastAPI 服务器Celery 任务队列RabbitMQ 作为消息代理定时任务处理完整

Python Websockets库的使用指南

《PythonWebsockets库的使用指南》pythonwebsockets库是一个用于创建WebSocket服务器和客户端的Python库,它提供了一种简单的方式来实现实时通信,支持异步和同步... 目录一、WebSocket 简介二、python 的 websockets 库安装三、完整代码示例1.

揭秘Python Socket网络编程的7种硬核用法

《揭秘PythonSocket网络编程的7种硬核用法》Socket不仅能做聊天室,还能干一大堆硬核操作,这篇文章就带大家看看Python网络编程的7种超实用玩法,感兴趣的小伙伴可以跟随小编一起... 目录1.端口扫描器:探测开放端口2.简易 HTTP 服务器:10 秒搭个网页3.局域网游戏:多人联机对战4.

使用Python实现快速搭建本地HTTP服务器

《使用Python实现快速搭建本地HTTP服务器》:本文主要介绍如何使用Python快速搭建本地HTTP服务器,轻松实现一键HTTP文件共享,同时结合二维码技术,让访问更简单,感兴趣的小伙伴可以了... 目录1. 概述2. 快速搭建 HTTP 文件共享服务2.1 核心思路2.2 代码实现2.3 代码解读3.

C#使用SQLite进行大数据量高效处理的代码示例

《C#使用SQLite进行大数据量高效处理的代码示例》在软件开发中,高效处理大数据量是一个常见且具有挑战性的任务,SQLite因其零配置、嵌入式、跨平台的特性,成为许多开发者的首选数据库,本文将深入探... 目录前言准备工作数据实体核心技术批量插入:从乌龟到猎豹的蜕变分页查询:加载百万数据异步处理:拒绝界面

Python使用自带的base64库进行base64编码和解码

《Python使用自带的base64库进行base64编码和解码》在Python中,处理数据的编码和解码是数据传输和存储中非常普遍的需求,其中,Base64是一种常用的编码方案,本文我将详细介绍如何使... 目录引言使用python的base64库进行编码和解码编码函数解码函数Base64编码的应用场景注意

Python基于wxPython和FFmpeg开发一个视频标签工具

《Python基于wxPython和FFmpeg开发一个视频标签工具》在当今数字媒体时代,视频内容的管理和标记变得越来越重要,无论是研究人员需要对实验视频进行时间点标记,还是个人用户希望对家庭视频进行... 目录引言1. 应用概述2. 技术栈分析2.1 核心库和模块2.2 wxpython作为GUI选择的优

Springboot处理跨域的实现方式(附Demo)

《Springboot处理跨域的实现方式(附Demo)》:本文主要介绍Springboot处理跨域的实现方式(附Demo),具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不... 目录Springboot处理跨域的方式1. 基本知识2. @CrossOrigin3. 全局跨域设置4.