Python处理Point, MultiPolygon, Polygon, LineString等Geo地理形状数据

本文主要是介绍Python处理Point, MultiPolygon, Polygon, LineString等Geo地理形状数据,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

依赖库

from shapely import Polygon, Point, LineString
import re

自编写函数

1. 将 字符串Polygon/MultiPolygon数据 转换为 坐标数据

输入输出

调用方式fork_MULTIPOLYGON_POLYGON_to_POLYGONLIST(str_polygon)

输入字符串形式的Polygon/MultiPolygon数据(支持三种格式)

输出:一个双层嵌套列表,顶层列表的元素是一个个POLYGON,底层列表的元素是一个POLYGON里的一个个坐标点

功能描述:将 Polygon/MultiPolygon 转化为 一个列表,这个列表里有多个POLYGON列表,每个POLYGON列表中的经纬度坐标用元组表示

样例

格式一:

MULTIPOLYGON (((-73.97535722895489 40.79358795668606, -73.97550491442216 40.7932206693501, -73.97571880885164 40.79329900902139, -73.97557038329896 40.793666024933465, -73.97535722895489 40.79358795668606)), ((-73.97552582561218 40.79316866412968, -73.97558333155439 40.79302564935169, -73.97579761926521 40.79310413236238, -73.97573982501896 40.793247041771274, -73.97552582561218 40.79316866412968)))

输出

[
[(-73.97535722895489, 40.79358795668606), (-73.97550491442216, 40.7932206693501), (-73.97571880885164, 40.79329900902139), (-73.97557038329896, 40.793666024933465), (-73.97535722895489, 40.79358795668606)],
[(-73.97552582561218, 40.79316866412968), (-73.97558333155439, 40.79302564935169), (-73.97579761926521, 40.79310413236238), (-73.97573982501896, 40.793247041771274), (-73.97552582561218, 40.79316866412968)]
]

格式二:

POLYGON ((-73.97759524402524 40.7618905, -73.97760683658178 40.76183484508208, -73.9776404794912 40.76178463805529, -73.97769287955111 40.76174479353323, -73.97775890747857 40.76171921177534, -73.9778321 40.761710396902316, -73.97790529252143 40.76171921177534, -73.97797132044889 40.76174479353323, -73.9780237205088 40.76178463805529, -73.97805736341822 40.76183484508208, -73.97806895597476 40.7618905, -73.97805736341822 40.76194615491792, -73.9780237205088 40.76199636194471, -73.97797132044889 40.76203620646677, -73.97790529252143 40.762061788224656, -73.9778321 40.76207060309768, -73.97775890747857 40.762061788224656, -73.97769287955111 40.76203620646677, -73.9776404794912 40.76199636194471, -73.97760683658178 40.76194615491792, -73.97759524402524 40.7618905))

输出

[
[(-73.97759524402524, 40.7618905), (-73.97760683658178, 40.76183484508208), (-73.9776404794912, 40.76178463805529), (-73.97769287955111, 40.76174479353323), (-73.97775890747857, 40.76171921177534), (-73.9778321, 40.761710396902316), (-73.97790529252143, 40.76171921177534), (-73.97797132044889, 40.76174479353323), (-73.9780237205088, 40.76178463805529), (-73.97805736341822, 40.76183484508208), (-73.97806895597476, 40.7618905), (-73.97805736341822, 40.76194615491792), (-73.9780237205088, 40.76199636194471), (-73.97797132044889, 40.76203620646677), (-73.97790529252143, 40.762061788224656), (-73.9778321, 40.76207060309768), (-73.97775890747857, 40.762061788224656), (-73.97769287955111, 40.76203620646677), (-73.9776404794912, 40.76199636194471), (-73.97760683658178, 40.76194615491792), (-73.97759524402524, 40.7618905)]
]

格式三:

POLYGON ((-73.98635378499995 40.764514924000025, -73.98637627999994 40.76448596900008, -73.98622909499994 40.764422067000055, -73.98624709199999 40.76439890300003, -73.98608441399995 40.764328275000025, -73.98613390299994 40.76426457500003, -73.98599446599997 40.764204035000034, -73.98598546799997 40.76421561700005, -73.98560588899994 40.764050816000065, -73.98557889499995 40.76408556100006, -73.98553241599996 40.76406538100008, -73.98555491099995 40.764036427000065, -73.98557815099997 40.764046517000054, -73.98560064599997 40.76401756200005, -73.98557740699994 40.76400747300005, -73.98567188699997 40.76388586200005, -73.98639231199996 40.76419864800005, -73.98637881499997 40.76421602000005, -73.98653374599996 40.76428328600008, -73.98654724199997 40.76426591300003, -73.98671766799998 40.76433990400005, -73.98672666499994 40.76432832300003, -73.98679638399994 40.764358591000075, -73.98678288799994 40.76437596400007, -73.98689133999994 40.76442305000006, -73.98690483699994 40.76440567700007, -73.98709075499994 40.76448639400007, -73.98707275899994 40.76450955800004, -73.98712698499997 40.76453310000005, -73.98711348899997 40.76455047300004, -73.98733039399997 40.764644643000054, -73.98736188599997 40.764604106000036, -73.98740836599995 40.764624285000025, -73.98742186299995 40.76460691200003, -73.98777046199996 40.76475825500006, -73.98740154699993 40.765233118000026, -73.98737055999999 40.76521966400003, -73.98736156199993 40.76523124600004, -73.98676506899994 40.76497227900006, -73.98678756299995 40.76494332400006, -73.98646995199994 40.76480543100007, -73.98646095399994 40.76481701300003, -73.98620531599994 40.764706025000066, -73.98619181899994 40.76472339800006, -73.98589744899994 40.76459559400007, -73.98605041699994 40.76439870100006, -73.98625182799998 40.764486146000024, -73.98624282899993 40.76449772900003, -73.98635128199999 40.76454481400003, -73.98634678299999 40.76455060600006, -73.98630804999993 40.76453378900004, -73.98624506299996 40.76461486200003, -73.98626055599993 40.76462158900006, -73.98622006499994 40.76467370700004, -73.98628203699997 40.76470061300006, -73.98630003399995 40.76467744900003, -73.98626904799994 40.76466399700007, -73.98630953899993 40.76461187800004, -73.98636376499996 40.76463542100004, -73.98631427599997 40.764699122000025, -73.98638399499998 40.76472939100006, -73.98652796399995 40.764544080000064, -73.98650472399999 40.764533990000075, -73.98647772999993 40.76456873600006, -73.98635378499995 40.764514924000025), (-73.98698650299997 40.764820600000064, -73.98700449999995 40.76479743600004, -73.98715943199994 40.76486470000003, -73.98712793899995 40.76490523700005, -73.98715117899997 40.76491532700004, -73.98711518699997 40.76496165400005, -73.98714617299999 40.764975108000044, -73.98725864899995 40.76483033300008, -73.98698751699999 40.76471262100006, -73.98697401999993 40.76472999400005, -73.98678035399996 40.76464591300004, -73.98676685699996 40.76466328600003, -73.98680095699996 40.76475940500006, -73.98683156999994 40.76475333500008, -73.98698650299997 40.764820600000064))

输出

/home/lizhicheng/UrbanKG/venv/bin/python /home/lizhicheng/UrbanKG/src/test.py 
[
[(-73.98635378499995, 40.764514924000025), (-73.98637627999994, 40.76448596900008), (-73.98622909499994, 40.764422067000055), (-73.98624709199999, 40.76439890300003), (-73.98608441399995, 40.764328275000025), (-73.98613390299994, 40.76426457500003), (-73.98599446599997, 40.764204035000034), (-73.98598546799997, 40.76421561700005), (-73.98560588899994, 40.764050816000065), (-73.98557889499995, 40.76408556100006), (-73.98553241599996, 40.76406538100008), (-73.98555491099995, 40.764036427000065), (-73.98557815099997, 40.764046517000054), (-73.98560064599997, 40.76401756200005), (-73.98557740699994, 40.76400747300005), (-73.98567188699997, 40.76388586200005), (-73.98639231199996, 40.76419864800005), (-73.98637881499997, 40.76421602000005), (-73.98653374599996, 40.76428328600008), (-73.98654724199997, 40.76426591300003), (-73.98671766799998, 40.76433990400005), (-73.98672666499994, 40.76432832300003), (-73.98679638399994, 40.764358591000075), (-73.98678288799994, 40.76437596400007), (-73.98689133999994, 40.76442305000006), (-73.98690483699994, 40.76440567700007), (-73.98709075499994, 40.76448639400007), (-73.98707275899994, 40.76450955800004), (-73.98712698499997, 40.76453310000005), (-73.98711348899997, 40.76455047300004), (-73.98733039399997, 40.764644643000054), (-73.98736188599997, 40.764604106000036), (-73.98740836599995, 40.764624285000025), (-73.98742186299995, 40.76460691200003), (-73.98777046199996, 40.76475825500006), (-73.98740154699993, 40.765233118000026), (-73.98737055999999, 40.76521966400003), (-73.98736156199993, 40.76523124600004), (-73.98676506899994, 40.76497227900006), (-73.98678756299995, 40.76494332400006), (-73.98646995199994, 40.76480543100007), (-73.98646095399994, 40.76481701300003), (-73.98620531599994, 40.764706025000066), (-73.98619181899994, 40.76472339800006), (-73.98589744899994, 40.76459559400007), (-73.98605041699994, 40.76439870100006), (-73.98625182799998, 40.764486146000024), (-73.98624282899993, 40.76449772900003), (-73.98635128199999, 40.76454481400003), (-73.98634678299999, 40.76455060600006), (-73.98630804999993, 40.76453378900004), (-73.98624506299996, 40.76461486200003), (-73.98626055599993, 40.76462158900006), (-73.98622006499994, 40.76467370700004), (-73.98628203699997, 40.76470061300006), (-73.98630003399995, 40.76467744900003), (-73.98626904799994, 40.76466399700007), (-73.98630953899993, 40.76461187800004), (-73.98636376499996, 40.76463542100004), (-73.98631427599997, 40.764699122000025), (-73.98638399499998, 40.76472939100006), (-73.98652796399995, 40.764544080000064), (-73.98650472399999, 40.764533990000075), (-73.98647772999993, 40.76456873600006), (-73.98635378499995, 40.764514924000025)], 
[(-73.98698650299997, 40.764820600000064), (-73.98700449999995, 40.76479743600004), (-73.98715943199994, 40.76486470000003), (-73.98712793899995, 40.76490523700005), (-73.98715117899997, 40.76491532700004), (-73.98711518699997, 40.76496165400005), (-73.98714617299999, 40.764975108000044), (-73.98725864899995, 40.76483033300008), (-73.98698751699999, 40.76471262100006), (-73.98697401999993, 40.76472999400005), (-73.98678035399996, 40.76464591300004), (-73.98676685699996, 40.76466328600003), (-73.98680095699996, 40.76475940500006), (-73.98683156999994, 40.76475333500008), (-73.98698650299997, 40.764820600000064)]
]

函数代码
def extract_content_from_MULTIPOLYGON(string):pattern = r'\(\((.*?)\)\)'  # 定义正则表达式模式,使用非贪婪匹配matches = re.findall(pattern, string)  # 使用findall函数查找所有匹配项if not matches:  # 如果没有匹配项,返回空列表return []else:return matchesdef MULTIPOLYGON_to_POLYGONLIST(multpolygon):prefix = 'MULTIPOLYGON'multpolygon = multpolygon[len(prefix):]multpolygon = multpolygon[2:-1]list_polygon_str = extract_content_from_MULTIPOLYGON(multpolygon)if not list_polygon_str:return []else:list_POLYGON = []for polygon_str in list_polygon_str:list_point_str = polygon_str.split(',')POLYGON = []for point in list_point_str:if point[0] == ' ':point_str = point[1:]else:point_str = pointpoint_list = point_str.split(' ')# dest_str = point_list[0] + ',' + point_list[1]longitude = float(point_list[0])latitude = float(point_list[1])Tuple = (longitude, latitude)POLYGON.append(Tuple)# POLYGON.append(dest_str)list_POLYGON.append(POLYGON)return list_POLYGONdef fork_MULTIPOLYGON_POLYGON_to_POLYGONLIST(input):if input.startswith('MULTIPOLYGON'):return MULTIPOLYGON_to_POLYGONLIST(input)else:prefix = 'POLYGON'input = input[len(prefix):]input = input[3:-2]if '(' in input or ')' in input:input = '(' + input + ')'arr = input.split('), (')list_str = []for item in arr:new_item = itemif item[0] == '(':new_item = item[1:]if item[-1] == ')':new_item = item[:-1]list_str.append(new_item)list_POLYGON = []for polygon_str in list_str:list_point_str = polygon_str.split(',')POLYGON = []for point in list_point_str:if point[0] == ' ':point_str = point[1:]else:point_str = pointpoint_list = point_str.split(' ')# dest_str = point_list[0] + ',' + point_list[1]longitude = float(point_list[0])latitude = float(point_list[1])Tuple = (longitude, latitude)POLYGON.append(Tuple)# POLYGON.append(dest_str)list_POLYGON.append(POLYGON)return list_POLYGONelse:  # 只可能有一个polygon# 按 ,split 如果以‘ ’开头,把空格去掉arr_str_coordinate = input.split(',')str_coordinate = []for coordinate in arr_str_coordinate:if coordinate[0] == ' ':str_coordinate.append(coordinate[1:])  # 如果开头有空格,则去掉空格else:str_coordinate.append(coordinate)list_point = []for str_coord in str_coordinate:a, b = str_coord.split(' ')longitude = float(a)latitude = float(b)list_point.append((longitude, latitude))list_POLYGON = [list_point]return list_POLYGON

2. 将 Polygon/MultiPolygon坐标数据 转换为 shapely库中的Polygon类对象的列表

输入输出

调用方式list_polygon = list_POLYGON2POLYGONs(list_POLYGON)

输入:1函数的输出——“一个双层嵌套列表,顶层列表的元素是一个个POLYGON,底层列表的元素是一个POLYGON里的一个个坐标点”

输出:shapely库中的Polygon类对象的列表

功能描述:将 Polygon/MultiPolygon坐标数据 转换为 shapely库中的Polygon类对象的列表

样例
# input为1函数介绍中的格式一样例
input = 'MULTIPOLYGON (((-73.97535722895489 40.79358795668606, -73.97550491442216 40.7932206693501, -73.97571880885164 40.79329900902139, -73.97557038329896 40.793666024933465, -73.97535722895489 40.79358795668606)), ((-73.97552582561218 40.79316866412968, -73.97558333155439 40.79302564935169, -73.97579761926521 40.79310413236238, -73.97573982501896 40.793247041771274, -73.97552582561218 40.79316866412968)))'
list_POLYGON = fork_MULTIPOLYGON_POLYGON_to_POLYGONLIST(input)
list_polygon = list_POLYGON2POLYGONs(list_POLYGON)
print(list_polygon)

控制台输出的内容为:

[
<POLYGON ((-73.975 40.794, -73.976 40.793, -73.976 40.793, -73.976 40.794, -...>, 
<POLYGON ((-73.976 40.793, -73.976 40.793, -73.976 40.793, -73.976 40.793, -...>
]
函数代码
def list_POLYGON2POLYGONs(list_POLYGON):list_polygon = []for POLYGON in list_POLYGON:polygon = Polygon(POLYGON)list_polygon.append(polygon)return list_polygon

3. 将字符串形式的LineString 转化为 shapely库中的LineString类对象

输入输出

调用方式line_string = get_LINESTRING(geometry)

输入:字符串形式的LineString
形如:

LINESTRING (-73.9477940 40.7203470, -73.9478810 40.7209187, -73.9479402 40.7213083, -73.9479510 40.7213790)

输出:shapely库中的LineString类对象

样例
geometry = 'LINESTRING (-73.9477940 40.7203470, -73.9478810 40.7209187, -73.9479402 40.7213083, -73.9479510 40.7213790)'line_string = get_LINESTRING(geometry)print(line_string)
print(type(line_string))

控制台输出如下:

LINESTRING (-73.947794 40.720347, -73.947881 40.7209187, -73.9479402 40.7213083, -73.947951 40.721379)
<class 'shapely.geometry.linestring.LineString'>
函数代码
def get_LINESTRING(input):prefix = 'LINESTRING 'input = input[len(prefix):]input = input[1:-1]cord_arr = input.split(',')points = []for cord in cord_arr:point_str = cordif cord[0] == ' ':point_str = point_str[1:]x, y = point_str.split(' ')tup = (float(x), float(y))points.append(tup)line_string = LineString(points)return line_string

这篇关于Python处理Point, MultiPolygon, Polygon, LineString等Geo地理形状数据的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/456861

相关文章

SpringBoot分段处理List集合多线程批量插入数据方式

《SpringBoot分段处理List集合多线程批量插入数据方式》文章介绍如何处理大数据量List批量插入数据库的优化方案:通过拆分List并分配独立线程处理,结合Spring线程池与异步方法提升效率... 目录项目场景解决方案1.实体类2.Mapper3.spring容器注入线程池bejsan对象4.创建

PHP轻松处理千万行数据的方法详解

《PHP轻松处理千万行数据的方法详解》说到处理大数据集,PHP通常不是第一个想到的语言,但如果你曾经需要处理数百万行数据而不让服务器崩溃或内存耗尽,你就会知道PHP用对了工具有多强大,下面小编就... 目录问题的本质php 中的数据流处理:为什么必不可少生成器:内存高效的迭代方式流量控制:避免系统过载一次性

Python的Darts库实现时间序列预测

《Python的Darts库实现时间序列预测》Darts一个集统计、机器学习与深度学习模型于一体的Python时间序列预测库,本文主要介绍了Python的Darts库实现时间序列预测,感兴趣的可以了解... 目录目录一、什么是 Darts?二、安装与基本配置安装 Darts导入基础模块三、时间序列数据结构与

Python正则表达式匹配和替换的操作指南

《Python正则表达式匹配和替换的操作指南》正则表达式是处理文本的强大工具,Python通过re模块提供了完整的正则表达式功能,本文将通过代码示例详细介绍Python中的正则匹配和替换操作,需要的朋... 目录基础语法导入re模块基本元字符常用匹配方法1. re.match() - 从字符串开头匹配2.

Python使用FastAPI实现大文件分片上传与断点续传功能

《Python使用FastAPI实现大文件分片上传与断点续传功能》大文件直传常遇到超时、网络抖动失败、失败后只能重传的问题,分片上传+断点续传可以把大文件拆成若干小块逐个上传,并在中断后从已完成分片继... 目录一、接口设计二、服务端实现(FastAPI)2.1 运行环境2.2 目录结构建议2.3 serv

C#实现千万数据秒级导入的代码

《C#实现千万数据秒级导入的代码》在实际开发中excel导入很常见,现代社会中很容易遇到大数据处理业务,所以本文我就给大家分享一下千万数据秒级导入怎么实现,文中有详细的代码示例供大家参考,需要的朋友可... 目录前言一、数据存储二、处理逻辑优化前代码处理逻辑优化后的代码总结前言在实际开发中excel导入很

通过Docker容器部署Python环境的全流程

《通过Docker容器部署Python环境的全流程》在现代化开发流程中,Docker因其轻量化、环境隔离和跨平台一致性的特性,已成为部署Python应用的标准工具,本文将详细演示如何通过Docker容... 目录引言一、docker与python的协同优势二、核心步骤详解三、进阶配置技巧四、生产环境最佳实践

Python一次性将指定版本所有包上传PyPI镜像解决方案

《Python一次性将指定版本所有包上传PyPI镜像解决方案》本文主要介绍了一个安全、完整、可离线部署的解决方案,用于一次性准备指定Python版本的所有包,然后导出到内网环境,感兴趣的小伙伴可以跟随... 目录为什么需要这个方案完整解决方案1. 项目目录结构2. 创建智能下载脚本3. 创建包清单生成脚本4

Python实现Excel批量样式修改器(附完整代码)

《Python实现Excel批量样式修改器(附完整代码)》这篇文章主要为大家详细介绍了如何使用Python实现一个Excel批量样式修改器,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一... 目录前言功能特性核心功能界面特性系统要求安装说明使用指南基本操作流程高级功能技术实现核心技术栈关键函

python获取指定名字的程序的文件路径的两种方法

《python获取指定名字的程序的文件路径的两种方法》本文主要介绍了python获取指定名字的程序的文件路径的两种方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要... 最近在做项目,需要用到给定一个程序名字就可以自动获取到这个程序在Windows系统下的绝对路径,以下