OpenCV 笔记(9):常用的边缘检测算子—— Roberts、Prewitt、Sobel

2023-12-04 20:12

本文主要是介绍OpenCV 笔记(9):常用的边缘检测算子—— Roberts、Prewitt、Sobel,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在本文开始之前,我们先了解一下算子的概念。

算子英语是 Operator,它是一个函数空间到函数空间上的映射 O:X→X。广义上的算子可以推广到任何空间。

函数是从数到数的映射。

泛函是从函数到数的映射。

算子是从函数到函数的映射。

算子不等同于函数,也不等同于算法。算法是更为广泛的概念,它包含了算子。

Part11. Roberts 算子

我们知道用 L1 范数来近似梯度的幅度:

其中,

在 x 方向,由偏导公式可知,其实就是相邻两个像素的值相减。同理,y 方向也是如此。因此可以得到如下算子。

24a83f231c07ef2874138519558abc1d.jpeg
图像的垂直和水平梯度.png

类似地,还有对角线方向。对于对角线方向梯度,公式和算子如下:

Roberts 卷积核:

38d2b8e7060c65446e3d510bce54fd0e.jpeg
Roberts 卷积核.png

我们可以实现一个基于 roberts 算子的边缘检测

#include <opencv2/opencv.hpp>
#include <opencv2/core.hpp>
#include <opencv2/highgui.hpp>
#include <opencv2/imgproc.hpp>
using namespace std;
using namespace cv;void roberts(Mat& input, Mat& output, Mat& kernel_x, Mat& kernel_y)
{int height = input.rows;int width = input.cols;int height_x = kernel_x.rows;int width_x = kernel_x.cols;int height_y = kernel_y.rows;int width_y = kernel_y.cols;for (int row = 1; row < height - 1; row++){for (int col = 1; col < width - 1; col++){float G_X = 0;for (int h = 0; h < height_x; h++){for (int w = 0; w < width_x; w++){G_X += input.at<uchar>(row + h, col + w) * kernel_x.at<float>(h, w);}}float G_Y = 0;for (int h = 0; h < height_y; h++){for (int w = 0; w < width_y; w++){G_Y += input.at<uchar>(row + h, col + w) * kernel_y.at<float>(h, w);}}output.at<uchar>(row, col) = saturate_cast<uchar>(cv::abs(G_X) + cv::abs(G_Y));}}
}int main(int argc,char *argv[])
{Mat src = imread(".../street.jpg");imshow("src",src);Mat gray;cv::cvtColor(src, gray, COLOR_BGR2GRAY);Mat kernelRoX = (cv::Mat_<float>(2,2) << -1,0,0,1);Mat kernelRoY = (cv::Mat_<float>(2,2) << 0,-1,1,0);Mat dst;dst.create(gray.rows,gray.cols,gray.type());roberts(gray, dst, kernelRoX, kernelRoY);imshow("Roberts",dst);waitKey(0);return 0;
}
6244459e2870d499772b2eaa003a8deb.jpeg
自定义实现的roberts边缘检测.png

也可以用 OpenCV 自定义的滤波器 filter2D() 函数,来实现 Roberts 边缘检测:

int main(int argc,char *argv[])
{Mat src = imread(".../street.jpg");imshow("src",src);Mat gray;cv::cvtColor(src, gray, COLOR_BGR2GRAY);Mat kernelRoX = (cv::Mat_<float>(2,2) << -1,0,0,1);Mat kernelRoY = (cv::Mat_<float>(2,2) << 0,-1,1,0);Mat dstRoX;Mat dstRoY;cv::filter2D(gray,dstRoX,-1,kernelRoX);cv::filter2D(gray,dstRoY,-1,kernelRoY);imshow("Roberts X", dstRoX);imshow("Roberts Y", dstRoY);dstRoX = cv::abs(dstRoX);dstRoY = cv::abs(dstRoY);Mat dst;add(dstRoX,dstRoY,dst);imshow("Roberts", dst);waitKey(0);return 0;
}
e5d6b0f270f3089786da23086afb61d2.jpeg
roberts x和y方向.png
e20350fb7cd778bf78a23ffbd57d1a1b.jpeg
roberts.png

Part22. Prewitt 算子

在下图的 3×3 区域,Roberts 算子利用和,实现对角差分。

40ab590c78bdcb4224ef2c8e4c4647b1.jpeg
3*3模版.png

但是 2×2 大小的核概念上很简单,但在计算边缘方向时,它们不如中心对称的核有用,中心对称核的最小尺寸为 3×3。

Prewitt 算子的设计思想:真正的边界点在水平方向垂直方向上的相邻点应该也同样为边界点,因此以更大的边缘检测滤波器,考虑周围更多的点会使得边缘检测更准确。

Prewitt 卷积核:

0b53749d7610fcfd3de5eeec3bd9c4c7.jpeg
Prewitt卷积核.png

Prewitt 算子如下:

#include <opencv2/opencv.hpp>
#include <opencv2/core.hpp>
#include <opencv2/highgui.hpp>
#include <opencv2/imgproc.hpp>
using namespace std;
using namespace cv;void prewitt(Mat& input, Mat& output, Mat& kernel_x, Mat& kernel_y)
{int height = input.rows;int width = input.cols;int height_x = kernel_x.rows;int width_x = kernel_x.cols;int height_y = kernel_y.rows;int width_y = kernel_y.cols;for (int row = 1; row < height - 1; row++){for (int col = 1; col < width - 1; col++){float G_X = 0;for (int h = 0; h < height_x; h++){for (int w = 0; w < width_x; w++){G_X += input.at<uchar>(row + h - 1, col + w - 1) * kernel_x.at<float>(h, w);}}float G_Y = 0;for (int h = 0; h < height_y; h++){for (int w = 0; w < width_y; w++){G_Y += input.at<uchar>(row + h - 1, col + w - 1) * kernel_y.at<float>(h, w);}}output.at<uchar>(row, col) = saturate_cast<uchar>(cv::abs(G_X) + cv::abs(G_Y));}}
}int main(int argc,char *argv[])
{Mat src = imread(".../street.jpg");imshow("src",src);Mat gray;cv::cvtColor(src, gray, COLOR_BGR2GRAY);Mat kernelPrewittX = (cv::Mat_<float>(3,3) << -1,0,1,-1,0,1,-1,0,1);Mat kernelPrewittY = (cv::Mat_<float>(3,3) << -1,-1,-1,0,0,0,1,1,1);Mat dst;dst.create(gray.rows,gray.cols,gray.type());prewitt(gray, dst, kernelPrewittX, kernelPrewittY);imshow("Prewitt", dst);waitKey(0);return 0;
}
2f50418c2d10dba43af36ee98864a6a5.jpeg
自定义实现的prewitt边缘检测.png

用 OpenCV 自定义的滤波器 filter2D() 函数,来实现 Prewitt 边缘检测:

int main(int argc,char *argv[])
{Mat src = imread(".../street.jpg");imshow("src",src);Mat gray;cv::cvtColor(src, gray, COLOR_BGR2GRAY);Mat kernelPrewittX = (cv::Mat_<float>(3,3) << -1,0,1,-1,0,1,-1,0,1);Mat kernelPrewittY = (cv::Mat_<float>(3,3) << -1,-1,-1,0,0,0,1,1,1);Mat dstPrewittX;Mat dstPrewittY;cv::filter2D(gray,dstPrewittX,-1,kernelPrewittX);cv::filter2D(gray,dstPrewittY,-1,kernelPrewittY);imshow("Prewitt X", dstPrewittX);imshow("Prewitt Y", dstPrewittY);dstPrewittX = cv::abs(dstPrewittX);dstPrewittY = cv::abs(dstPrewittY);Mat dst;add(dstPrewittX,dstPrewittY,dst);imshow("Prewitt", dst);waitKey(0);return 0;
}

Prewitt X 检测垂直的边界,Prewitt Y 检测水平的边界。

2b8591cbb72ca96e54744d25e03cb6e1.jpeg
prewitt x 和 y方向

下图展示的是联合梯度。

a5799e1881f08912f80d5ad45432bdb8.jpeg
prewitt.png

Part33. Sobel 算子

Roberts 算子按照对角线两个方向的梯度确定边缘点,Prewitt 算子按照水平和垂直方向的梯度确定边缘点。

上面我们通过使用 cv::filter2D() 函数来实现这2种边缘检测,都展示了其对两个方向对边缘的检测的效果图,我们发现不同方向梯度的边缘检测效果各有特点。

融合多种方向的梯度,能够有效提升边缘检测效果。Sobel 算子考虑了水平、垂直和两个对角,共计4个方向对的梯度加权求和。

e9a38a142bb9b9da32bbc8145aa3a324.jpeg
Sobel各个方向的梯度.png

Sobel 的作者定义了一个给定邻域方向的梯度矢量 g 的幅度为:

像素灰度差分像素距离

其中,像素距离使用曼哈顿距离进行计算。

之前在第六篇介绍过曼哈顿距离,表示从像素 p 向像素 q 出发,每次能走的点必须是在当前像素点的 4 邻域中。一步一步走到 q 点后,一共经过的像素点数就是曼哈顿距离。

矢量 g 的方向可以通过中心像素 z5 相关邻域的单位矢量给出,这里的邻域是对称出现的,即四个方向对:(z1,z9),(z2,z8),(z3,z7),(z6,z4)。沿着4个方向对上求其梯度矢量和,可以得到像素 z5 的平均梯度估计。

公式中 4个单位向量 [1, 1],[-1, 1],[0, 1], [1, 0] 控制差分的方向,系数 1/4, 1/2 为距离反比权重。例如 z1 到 z9 的曼哈顿距离是 4,z2 到 z8 的曼哈顿距离是 2。

对于上述公式,为了避免具有小数的乘除计算,因此对 G 乘上缩放因子 4

可得,Sobel 算子如下:

Sobel 卷积核:

3159de7284f871c4b508b097b0b5d83e.jpeg
Sobel卷积核.png
#include <opencv2/opencv.hpp>
#include <opencv2/core.hpp>
#include <opencv2/highgui.hpp>
#include <opencv2/imgproc.hpp>
using namespace std;using namespace cv;void sobel(Mat& input, Mat& output, Mat& kernel_x, Mat& kernel_y)
{int height = input.rows;int width = input.cols;int height_x = kernel_x.rows;int width_x = kernel_x.cols;int height_y = kernel_y.rows;int width_y = kernel_y.cols;for (int row = 1; row < height - 1; row++){for (int col = 1; col < width - 1; col++){float G_X = 0;for (int h = 0; h < height_x; h++){for (int w = 0; w < width_x; w++){G_X += input.at<uchar>(row + h - 1, col + w - 1) * kernel_x.at<float>(h, w);}}float G_Y = 0;for (int h = 0; h < height_y; h++){for (int w = 0; w < width_y; w++){G_Y += input.at<uchar>(row + h - 1, col + w - 1) * kernel_y.at<float>(h, w);}}output.at<uchar>(row, col) = saturate_cast<uchar>(cv::abs(G_X) + cv::abs(G_Y));}}
}int main(int argc,char *argv[])
{Mat src = imread(".../street.jpg");imshow("src",src);Mat gray;cv::cvtColor(src, gray, COLOR_BGR2GRAY);Mat kernelSobelX = (cv::Mat_<float>(3,3) << -1,0,1,-2,0,2,-1,0,1);Mat kernelSobelY = (cv::Mat_<float>(3,3) << -1,-2,-1,0,0,0,1,2,1);Mat dst;dst.create(gray.rows,gray.cols,gray.type());sobel(gray, dst, kernelSobelX, kernelSobelY);imshow("Sobel", dst);waitKey(0);return 0;
}
8dee28502649386d80a5ba852e9cae54.jpeg
自定义实现的sobel边缘检测.png

用 OpenCV 自带的 Sobel() 函数来实现其边缘检测

int main(int argc,char *argv[])
{Mat src = imread(".../street.jpg");imshow("src",src);Mat gray;cv::cvtColor(src, gray, COLOR_BGR2GRAY);Mat dstSobelX;Mat dstSobelY;Sobel(gray, dstSobelX, CV_16S, 1, 0, 3);Sobel(gray, dstSobelY, CV_16S, 0, 1, 3);convertScaleAbs(dstSobelX, dstSobelX);convertScaleAbs(dstSobelY, dstSobelY);imshow("Sobel X", dstSobelX);imshow("Sobel Y", dstSobelY);Mat dst;add(dstSobelX,dstSobelX,dst);imshow("Sobel", dst);waitKey(0);return 0;
}
b89bc2c7b61e2c6d9a1ea6c1d07a5d2a.jpeg
sobel x和y方向.png
ecc0646d592f5d9d31f3762177a69040.jpeg
sobel.png

OpenCV 提供的Sobel() 函数,稍微解释一下几个参数的含义

void Sobel( InputArray src, OutputArray dst, int ddepth,int dx, int dy, int ksize = 3,double scale = 1, double delta = 0,int borderType = BORDER_DEFAULT );

第三个参数 ddepth:表示输出梯度的数据类型

  • 若 src.depth() = CV_8U,则 ddepth =-1/CV_16S/CV_32F/CV_64F

  • 若 src.depth() = CV_16U/CV_16S,则 ddepth =-1/CV_32F/CV_64F

  • 若 src.depth() = CV_32F,则 ddepth =-1/CV_32F/CV_64F

  • 若 src.depth() = CV_64F,则 ddepth = -1/CV_64F

第四个参数 dx:导数在 x 轴方向的阶数。dx=1, dy=0 表示对 x 方向计算梯度。

第五个参数 dy:导数在 y 轴方向的阶数。dx=0, dy=1 表示对 y 方向计算梯度。

第六个参数 ksize:Sobel 卷积核的大小,使用 3、5、7、9、11 等等。

Part44.  总结

在实际的图像分割中,我们往往只用一阶、二阶导数,他们都各有优势。 Roberts、Prewitt、Sobel 算子是一阶导数的边缘算子,通过卷积核与图像的每个像素点做卷积和运算,然后选取合适的阈值来提取图像的边缘。本文分别用这些算子对同一幅图像进行边缘检测,可以看到不同的效果,等到介绍完所有常用的算子后会对他们做一个总结。

另外,我们之前介绍过  Laplace 算子,它是二阶导数算子,后面的文章还会继续介绍二阶导数的边缘算子。

Java与Android技术栈】公众号

关注 Java/Kotlin 服务端、桌面端 、Android 、机器学习、端侧智能

更多精彩内容请关注:

这篇关于OpenCV 笔记(9):常用的边缘检测算子—— Roberts、Prewitt、Sobel的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/454766

相关文章

springboot项目中常用的工具类和api详解

《springboot项目中常用的工具类和api详解》在SpringBoot项目中,开发者通常会依赖一些工具类和API来简化开发、提高效率,以下是一些常用的工具类及其典型应用场景,涵盖Spring原生... 目录1. Spring Framework 自带工具类(1) StringUtils(2) Coll

在PyCharm中安装PyTorch、torchvision和OpenCV详解

《在PyCharm中安装PyTorch、torchvision和OpenCV详解》:本文主要介绍在PyCharm中安装PyTorch、torchvision和OpenCV方式,具有很好的参考价值,... 目录PyCharm安装PyTorch、torchvision和OpenCV安装python安装PyTor

openCV中KNN算法的实现

《openCV中KNN算法的实现》KNN算法是一种简单且常用的分类算法,本文主要介绍了openCV中KNN算法的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的... 目录KNN算法流程使用OpenCV实现KNNOpenCV 是一个开源的跨平台计算机视觉库,它提供了各

OpenCV图像形态学的实现

《OpenCV图像形态学的实现》本文主要介绍了OpenCV图像形态学的实现,包括腐蚀、膨胀、开运算、闭运算、梯度运算、顶帽运算和黑帽运算,文中通过示例代码介绍的非常详细,需要的朋友们下面随着小编来一起... 目录一、图像形态学简介二、腐蚀(Erosion)1. 原理2. OpenCV 实现三、膨胀China编程(

利用Python快速搭建Markdown笔记发布系统

《利用Python快速搭建Markdown笔记发布系统》这篇文章主要为大家详细介绍了使用Python生态的成熟工具,在30分钟内搭建一个支持Markdown渲染、分类标签、全文搜索的私有化知识发布系统... 目录引言:为什么要自建知识博客一、技术选型:极简主义开发栈二、系统架构设计三、核心代码实现(分步解析

Java String字符串的常用使用方法

《JavaString字符串的常用使用方法》String是JDK提供的一个类,是引用类型,并不是基本的数据类型,String用于字符串操作,在之前学习c语言的时候,对于一些字符串,会初始化字符数组表... 目录一、什么是String二、如何定义一个String1. 用双引号定义2. 通过构造函数定义三、St

opencv图像处理之指纹验证的实现

《opencv图像处理之指纹验证的实现》本文主要介绍了opencv图像处理之指纹验证的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学... 目录一、简介二、具体案例实现1. 图像显示函数2. 指纹验证函数3. 主函数4、运行结果三、总结一、

python+opencv处理颜色之将目标颜色转换实例代码

《python+opencv处理颜色之将目标颜色转换实例代码》OpenCV是一个的跨平台计算机视觉库,可以运行在Linux、Windows和MacOS操作系统上,:本文主要介绍python+ope... 目录下面是代码+ 效果 + 解释转HSV: 关于颜色总是要转HSV的掩膜再标注总结 目标:将红色的部分滤

Linux上设置Ollama服务配置(常用环境变量)

《Linux上设置Ollama服务配置(常用环境变量)》本文主要介绍了Linux上设置Ollama服务配置(常用环境变量),Ollama提供了多种环境变量供配置,如调试模式、模型目录等,下面就来介绍一... 目录在 linux 上设置环境变量配置 OllamPOgxSRJfa手动安装安装特定版本查看日志在

Java常用注解扩展对比举例详解

《Java常用注解扩展对比举例详解》:本文主要介绍Java常用注解扩展对比的相关资料,提供了丰富的代码示例,并总结了最佳实践建议,帮助开发者更好地理解和应用这些注解,需要的朋友可以参考下... 目录一、@Controller 与 @RestController 对比二、使用 @Data 与 不使用 @Dat