双自由度振动系统/车辆悬架的受力分析及建模——以1/4车辆悬架为例

2023-12-04 16:10

本文主要是介绍双自由度振动系统/车辆悬架的受力分析及建模——以1/4车辆悬架为例,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

引入

        在做悬架垂向运动控制或动态力学计算时,双质量振动系统微分方程是所有工作的基础,常见如下形式:(注意z,z_{t},z_{r}分别是簧上质量、簧下质量、路面的垂向位移变化)

        这里给出两种动力学方程:

(1)                                \left.\left\{\begin{array}{l}M\ddot{z}=k\left(z_t-z\right)+c\left(\dot{z}_t-\dot{z}\right)\\m\ddot{z}_t=k_t\left(z_r-z_t\right)-k\left(z_t-z\right)-c\left(\dot{z}_t-\dot{z}\right)\end{array}\right.\right.

(2)                                \begin{cases}M\ddot{z}=-k(z-z_{t})-c(\dot{z}-\dot{z}_{t})\\m\ddot{z}_{t}=k(z-z_{t})+c(\dot{z}-\dot{z}_{t})-k_{t}(z_{t}-z_{r})\end{cases}

        仔细观察,这两个方程组是完全一样的。在研读论文时,可能会发现一个令人懊恼的问题:不同的论文有不同的写法,在我们试着读懂这些论文时,浪费了大量的时间在推导这一个小小的公式上,其实只是不同作者的思路不同罢了。在双自由度振动系统问题上,大致分为两类,而最后得出的动力学方程也不外乎以上“两种”形式。

        下面分别给出这两种形式的推导过程。

(1)正常思维

        首先假设 zr > zt > z , 也就是假设  路面位移  >  簧下质量位移  >  簧上质量位移 。(其实这个假设没有必要,因为这是事实。因为路面振动引起了簧下质量振动,又因为簧下质量振动引起了簧上质量振动,振动系统的目的就是要减震,上边的位移比下边小也很好理解。)

        基于此,我们可以进行受力分析,然后利用牛顿定律得出方程。

        受力分析:
                                                                        

        其中,惯性力M\ddot{z}m\ddot{z}的方向非常重要,记住:惯性力方向与加速度方向相反

        对于M,因为簧下质量位移  >  簧上质量位移,弹簧和阻尼都被压缩,所以k弹簧和阻尼力都向上;又因为在这种假设情况下,是簧下质量位移引起的簧上质量位移,故M具有向上运动趋势,惯性力M\ddot{z}向下。

        对于m,因为路面位移  >  簧下质量位移  >  簧上质量位移,  所以k_{t}弹簧力向上, k弹簧和阻尼力方向与M所受这两个力方向相反,所以向下;又因为在这种假设情况下,是路面位移引起的簧下质量位移,故m有向上加速趋势,所以这里加速度方向向上,惯性力m\ddot{z}方向向下。

        根据受力分析结果以及牛顿定律不难得出(1)式。

(2)逆向思维

不同的人考虑问题从不同角度出发,对于(2)式的推导,可以这样理解:

        假设M之上存在一个 弹簧 k_{0} 或者 阻尼 c_{0} (无关紧要)连接着M与天空,这同样是著名的天钩控制(sky-hook)理论的理想状态。模型如下:

        这里我们假设天空也存在一个位移 z_{0} ,并且假设 天空位移 > 簧上质量位移 > 簧下质量位移 > 路面位移。基于此,

受力分析:

                                           

相信通过对(1)式的理解学习,第(2)种情况的受力分析就不难理解了。

        对于M,因为 簧上质量位移  >  簧下质量位移,弹簧 k 和阻尼都被拉伸,所以k弹簧和阻尼力都向下,弹簧 k_{0} 被拉伸, k_{0} 弹簧力向上;又因为这种假设情况下,是簧上质量位移引起的簧下质量位移,故M具有向上运动趋势,惯性力M\ddot{z}向下。

        对于m,因为簧上质量位移  >  簧下质量位移  >  路面位移, k_{t} 弹簧被拉伸,所以 k_{t} 弹簧力向下,k弹簧和阻尼力方向与 M所受这两个力 方向相反,所以向上;又因为在这种假设情况下,是簧下质量位移引起的路面位移,故m有向上加速趋势,所以这里加速度方向向上,惯性力m\ddot{z}方向向下。

可以得到以下方程:

  (3)              ​​​​​​​                \begin{cases}M\ddot{z}=k_{0}(z_{0}-z)-k(z-z_{t})-c(\dot{z}-\dot{z}_{t})\\m\ddot{z}_{t}=k(z-z_{t})+c(\dot{z}-\dot{z}_{t})-k_{t}(z_{t}-z_{r})\end{cases}

        这里多了 k_{0} ,因为实际上不存在这样一个弹簧连接天空和M,所以可以令 k_{0} =0,消去这一项,从而得到(2)式。


        可以发现,两种情况下,M和m的惯性力方向都是向下的,因为无论是收到推力还是拉力,合力方向向上,加速度方向向上,惯性力方向也就向下了。

        无论是  认为 地面位移引起振动 还是 认为M位移引起振动,最后得到的微分方程是一样的,或许放这样两张图更容易理解:

(1)路面位移引起
(2)M位移引起

    

  总之,不论在哪种情况下,最后得出的方程肯定是一样的,码字不易,你懂的。

这篇关于双自由度振动系统/车辆悬架的受力分析及建模——以1/4车辆悬架为例的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/454071

相关文章

Go使用pprof进行CPU,内存和阻塞情况分析

《Go使用pprof进行CPU,内存和阻塞情况分析》Go语言提供了强大的pprof工具,用于分析CPU、内存、Goroutine阻塞等性能问题,帮助开发者优化程序,提高运行效率,下面我们就来深入了解下... 目录1. pprof 介绍2. 快速上手:启用 pprof3. CPU Profiling:分析 C

MySQL表锁、页面锁和行锁的作用及其优缺点对比分析

《MySQL表锁、页面锁和行锁的作用及其优缺点对比分析》MySQL中的表锁、页面锁和行锁各有特点,适用于不同的场景,表锁锁定整个表,适用于批量操作和MyISAM存储引擎,页面锁锁定数据页,适用于旧版本... 目录1. 表锁(Table Lock)2. 页面锁(Page Lock)3. 行锁(Row Lock

CSS3 最强二维布局系统之Grid 网格布局

《CSS3最强二维布局系统之Grid网格布局》CS3的Grid网格布局是目前最强的二维布局系统,可以同时对列和行进行处理,将网页划分成一个个网格,可以任意组合不同的网格,做出各种各样的布局,本文介... 深入学习 css3 目前最强大的布局系统 Grid 网格布局Grid 网格布局的基本认识Grid 网

Springboot中分析SQL性能的两种方式详解

《Springboot中分析SQL性能的两种方式详解》文章介绍了SQL性能分析的两种方式:MyBatis-Plus性能分析插件和p6spy框架,MyBatis-Plus插件配置简单,适用于开发和测试环... 目录SQL性能分析的两种方式:功能介绍实现方式:实现步骤:SQL性能分析的两种方式:功能介绍记录

最长公共子序列问题的深度分析与Java实现方式

《最长公共子序列问题的深度分析与Java实现方式》本文详细介绍了最长公共子序列(LCS)问题,包括其概念、暴力解法、动态规划解法,并提供了Java代码实现,暴力解法虽然简单,但在大数据处理中效率较低,... 目录最长公共子序列问题概述问题理解与示例分析暴力解法思路与示例代码动态规划解法DP 表的构建与意义动

在不同系统间迁移Python程序的方法与教程

《在不同系统间迁移Python程序的方法与教程》本文介绍了几种将Windows上编写的Python程序迁移到Linux服务器上的方法,包括使用虚拟环境和依赖冻结、容器化技术(如Docker)、使用An... 目录使用虚拟环境和依赖冻结1. 创建虚拟环境2. 冻结依赖使用容器化技术(如 docker)1. 创

CentOS系统Maven安装教程分享

《CentOS系统Maven安装教程分享》本文介绍了如何在CentOS系统中安装Maven,并提供了一个简单的实际应用案例,安装Maven需要先安装Java和设置环境变量,Maven可以自动管理项目的... 目录准备工作下载并安装Maven常见问题及解决方法实际应用案例总结Maven是一个流行的项目管理工具

C#使用DeepSeek API实现自然语言处理,文本分类和情感分析

《C#使用DeepSeekAPI实现自然语言处理,文本分类和情感分析》在C#中使用DeepSeekAPI可以实现多种功能,例如自然语言处理、文本分类、情感分析等,本文主要为大家介绍了具体实现步骤,... 目录准备工作文本生成文本分类问答系统代码生成翻译功能文本摘要文本校对图像描述生成总结在C#中使用Deep

C#实现系统信息监控与获取功能

《C#实现系统信息监控与获取功能》在C#开发的众多应用场景中,获取系统信息以及监控用户操作有着广泛的用途,比如在系统性能优化工具中,需要实时读取CPU、GPU资源信息,本文将详细介绍如何使用C#来实现... 目录前言一、C# 监控键盘1. 原理与实现思路2. 代码实现二、读取 CPU、GPU 资源信息1.

在C#中获取端口号与系统信息的高效实践

《在C#中获取端口号与系统信息的高效实践》在现代软件开发中,尤其是系统管理、运维、监控和性能优化等场景中,了解计算机硬件和网络的状态至关重要,C#作为一种广泛应用的编程语言,提供了丰富的API来帮助开... 目录引言1. 获取端口号信息1.1 获取活动的 TCP 和 UDP 连接说明:应用场景:2. 获取硬