双自由度振动系统/车辆悬架的受力分析及建模——以1/4车辆悬架为例

2023-12-04 16:10

本文主要是介绍双自由度振动系统/车辆悬架的受力分析及建模——以1/4车辆悬架为例,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

引入

        在做悬架垂向运动控制或动态力学计算时,双质量振动系统微分方程是所有工作的基础,常见如下形式:(注意z,z_{t},z_{r}分别是簧上质量、簧下质量、路面的垂向位移变化)

        这里给出两种动力学方程:

(1)                                \left.\left\{\begin{array}{l}M\ddot{z}=k\left(z_t-z\right)+c\left(\dot{z}_t-\dot{z}\right)\\m\ddot{z}_t=k_t\left(z_r-z_t\right)-k\left(z_t-z\right)-c\left(\dot{z}_t-\dot{z}\right)\end{array}\right.\right.

(2)                                \begin{cases}M\ddot{z}=-k(z-z_{t})-c(\dot{z}-\dot{z}_{t})\\m\ddot{z}_{t}=k(z-z_{t})+c(\dot{z}-\dot{z}_{t})-k_{t}(z_{t}-z_{r})\end{cases}

        仔细观察,这两个方程组是完全一样的。在研读论文时,可能会发现一个令人懊恼的问题:不同的论文有不同的写法,在我们试着读懂这些论文时,浪费了大量的时间在推导这一个小小的公式上,其实只是不同作者的思路不同罢了。在双自由度振动系统问题上,大致分为两类,而最后得出的动力学方程也不外乎以上“两种”形式。

        下面分别给出这两种形式的推导过程。

(1)正常思维

        首先假设 zr > zt > z , 也就是假设  路面位移  >  簧下质量位移  >  簧上质量位移 。(其实这个假设没有必要,因为这是事实。因为路面振动引起了簧下质量振动,又因为簧下质量振动引起了簧上质量振动,振动系统的目的就是要减震,上边的位移比下边小也很好理解。)

        基于此,我们可以进行受力分析,然后利用牛顿定律得出方程。

        受力分析:
                                                                        

        其中,惯性力M\ddot{z}m\ddot{z}的方向非常重要,记住:惯性力方向与加速度方向相反

        对于M,因为簧下质量位移  >  簧上质量位移,弹簧和阻尼都被压缩,所以k弹簧和阻尼力都向上;又因为在这种假设情况下,是簧下质量位移引起的簧上质量位移,故M具有向上运动趋势,惯性力M\ddot{z}向下。

        对于m,因为路面位移  >  簧下质量位移  >  簧上质量位移,  所以k_{t}弹簧力向上, k弹簧和阻尼力方向与M所受这两个力方向相反,所以向下;又因为在这种假设情况下,是路面位移引起的簧下质量位移,故m有向上加速趋势,所以这里加速度方向向上,惯性力m\ddot{z}方向向下。

        根据受力分析结果以及牛顿定律不难得出(1)式。

(2)逆向思维

不同的人考虑问题从不同角度出发,对于(2)式的推导,可以这样理解:

        假设M之上存在一个 弹簧 k_{0} 或者 阻尼 c_{0} (无关紧要)连接着M与天空,这同样是著名的天钩控制(sky-hook)理论的理想状态。模型如下:

        这里我们假设天空也存在一个位移 z_{0} ,并且假设 天空位移 > 簧上质量位移 > 簧下质量位移 > 路面位移。基于此,

受力分析:

                                           

相信通过对(1)式的理解学习,第(2)种情况的受力分析就不难理解了。

        对于M,因为 簧上质量位移  >  簧下质量位移,弹簧 k 和阻尼都被拉伸,所以k弹簧和阻尼力都向下,弹簧 k_{0} 被拉伸, k_{0} 弹簧力向上;又因为这种假设情况下,是簧上质量位移引起的簧下质量位移,故M具有向上运动趋势,惯性力M\ddot{z}向下。

        对于m,因为簧上质量位移  >  簧下质量位移  >  路面位移, k_{t} 弹簧被拉伸,所以 k_{t} 弹簧力向下,k弹簧和阻尼力方向与 M所受这两个力 方向相反,所以向上;又因为在这种假设情况下,是簧下质量位移引起的路面位移,故m有向上加速趋势,所以这里加速度方向向上,惯性力m\ddot{z}方向向下。

可以得到以下方程:

  (3)              ​​​​​​​                \begin{cases}M\ddot{z}=k_{0}(z_{0}-z)-k(z-z_{t})-c(\dot{z}-\dot{z}_{t})\\m\ddot{z}_{t}=k(z-z_{t})+c(\dot{z}-\dot{z}_{t})-k_{t}(z_{t}-z_{r})\end{cases}

        这里多了 k_{0} ,因为实际上不存在这样一个弹簧连接天空和M,所以可以令 k_{0} =0,消去这一项,从而得到(2)式。


        可以发现,两种情况下,M和m的惯性力方向都是向下的,因为无论是收到推力还是拉力,合力方向向上,加速度方向向上,惯性力方向也就向下了。

        无论是  认为 地面位移引起振动 还是 认为M位移引起振动,最后得到的微分方程是一样的,或许放这样两张图更容易理解:

(1)路面位移引起
(2)M位移引起

    

  总之,不论在哪种情况下,最后得出的方程肯定是一样的,码字不易,你懂的。

这篇关于双自由度振动系统/车辆悬架的受力分析及建模——以1/4车辆悬架为例的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/454071

相关文章

Linux系统中卸载与安装JDK的详细教程

《Linux系统中卸载与安装JDK的详细教程》本文详细介绍了如何在Linux系统中通过Xshell和Xftp工具连接与传输文件,然后进行JDK的安装与卸载,安装步骤包括连接Linux、传输JDK安装包... 目录1、卸载1.1 linux删除自带的JDK1.2 Linux上卸载自己安装的JDK2、安装2.1

Spring事务中@Transactional注解不生效的原因分析与解决

《Spring事务中@Transactional注解不生效的原因分析与解决》在Spring框架中,@Transactional注解是管理数据库事务的核心方式,本文将深入分析事务自调用的底层原理,解释为... 目录1. 引言2. 事务自调用问题重现2.1 示例代码2.2 问题现象3. 为什么事务自调用会失效3

找不到Anaconda prompt终端的原因分析及解决方案

《找不到Anacondaprompt终端的原因分析及解决方案》因为anaconda还没有初始化,在安装anaconda的过程中,有一行是否要添加anaconda到菜单目录中,由于没有勾选,导致没有菜... 目录问题原因问http://www.chinasem.cn题解决安装了 Anaconda 却找不到 An

Spring定时任务只执行一次的原因分析与解决方案

《Spring定时任务只执行一次的原因分析与解决方案》在使用Spring的@Scheduled定时任务时,你是否遇到过任务只执行一次,后续不再触发的情况?这种情况可能由多种原因导致,如未启用调度、线程... 目录1. 问题背景2. Spring定时任务的基本用法3. 为什么定时任务只执行一次?3.1 未启用

Linux系统之主机网络配置方式

《Linux系统之主机网络配置方式》:本文主要介绍Linux系统之主机网络配置方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、查看主机的网络参数1、查看主机名2、查看IP地址3、查看网关4、查看DNS二、配置网卡1、修改网卡配置文件2、nmcli工具【通用

Linux系统之dns域名解析全过程

《Linux系统之dns域名解析全过程》:本文主要介绍Linux系统之dns域名解析全过程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、dns域名解析介绍1、DNS核心概念1.1 区域 zone1.2 记录 record二、DNS服务的配置1、正向解析的配置

C++ 各种map特点对比分析

《C++各种map特点对比分析》文章比较了C++中不同类型的map(如std::map,std::unordered_map,std::multimap,std::unordered_multima... 目录特点比较C++ 示例代码 ​​​​​​代码解释特点比较1. std::map底层实现:基于红黑

Linux系统中配置静态IP地址的详细步骤

《Linux系统中配置静态IP地址的详细步骤》本文详细介绍了在Linux系统中配置静态IP地址的五个步骤,包括打开终端、编辑网络配置文件、配置IP地址、保存并重启网络服务,这对于系统管理员和新手都极具... 目录步骤一:打开终端步骤二:编辑网络配置文件步骤三:配置静态IP地址步骤四:保存并关闭文件步骤五:重

Spring、Spring Boot、Spring Cloud 的区别与联系分析

《Spring、SpringBoot、SpringCloud的区别与联系分析》Spring、SpringBoot和SpringCloud是Java开发中常用的框架,分别针对企业级应用开发、快速开... 目录1. Spring 框架2. Spring Boot3. Spring Cloud总结1. Sprin

Spring 中 BeanFactoryPostProcessor 的作用和示例源码分析

《Spring中BeanFactoryPostProcessor的作用和示例源码分析》Spring的BeanFactoryPostProcessor是容器初始化的扩展接口,允许在Bean实例化前... 目录一、概览1. 核心定位2. 核心功能详解3. 关键特性二、Spring 内置的 BeanFactory